
 A Novel Collaborative Caching Technique To Improve

Performance on Data Storage In Hadoop

Dr.N.Gopika rani

Assistant Professor(Sl.Grade),

CSE department

PSG College of Technology

Coimbatore

9994153301

ngopika79@gmail.com

 Dr.N.Hema priya

Assistant Professor(Sl.Grade),

IT department

PSG College of Technology

Coimbatore

nhemapriya@gmail.com

Abstract

Explosion of data and computing resources necessitates the use of platforms like Hadoop to

handle large data sets. Hadoop comprises of HDFS and MapReduce framework. HDFS uses

the MapReduce paradigm to store huge amounts of data in a scalable manages a commodity

hardware. Map Reduce framework is used to perform analysis and carry computations

parallel on huge datasets. Analysis performed on existing Hadoop configuration, which

shows that processing of map-reduce is very slow due to increased access latency for data.

This access latency in Hadoop slows processing speed. This necessitates the use of a caching

scheme on the distributed platform to reduce latency. Hadoop currently uses Modified ARC

Caching. The proposed technique is Collaborative caching with Least Unified Value (LUV)

cache replacement policy. The novel cache replacement technique uses Least Unified Value,

increases the performance of Distributed Caching System in Hadoop.

Keywords—Collaborative Caching, MapReduce, Least Unified Value, Hadoop.

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:2169

1. Introduction

Analysis of massive amounts of data produced during online activities is resource intensive

and complex. Online analytics tasks require a specialized framework like Hadoop to access

and handle large data sets. Hadoop is an open source scalable distributed framework based on

clustered architecture. Its master/slave architecture decouples metadata and application data.

Metadata is stored on server NameNode and application data resides on datanode in hadoop.

Hadoop is being utilized by reputed industries like the Amazon, Google, Facebook, and

Yahoo etc. [20]. Facebook is uses a modified Hadoop architecture in real time for better

throughput and latency. Hadoop has gained more importance because of its high reliability,

scalability and parallel computations on huge data sets.

1.1 Data Storage on Hadoop

Hadoop applications uses the Hadoop Distributed File System (HDFS).HDFS is

distributed system facilitate usage of data across hadoop clusters[15]. HDFS is the platform

for managing data for big data applications. HDFS initially takes the data from client

application, it separates the information into blocks and distributes them to datanodes of

cluster for parallel processing. The system maintains replica of data so that one copy of data

should be available on different rack. If any datanode fails in the cluster, it allows some other

node to continue the failed process. Fig 1 shows the working of HDFS.

1.2 MapReduce

Hadoop uses MapReduce to perform analysis and parallel computations on the data.

According to PACMan [21], map phase in Map Reduce involves reading raw information

from the disk and this task is I/O based. Map phase generates <key, value> pairs as output

that are combined by Reduce phase to generate a single result. Optimizing MapReduce Job

Performance [6], explains that optimization done for improving the performance of

MapReduce Tasks. Processing time of MapReduce job can be improved by adding more

nodes to the cluster, but that is not a cost effective solution [5].

1.3 Collaborative Caching

 We know that cache data access is much faster when compared to disk access. Hence

caching concept can be used for improving the performance of map reduce tasks.

Collaborative caching is implemented with centralized cache management which is managed

by namenode [17]. Every datanode is allocated with local data cache which considered as

globally single cache. Not only local data can be cached on datanode, but also data of other

nodes can be cached in remote caches. If cache miss occurs in local data cache, then it can be

accessed the data from remote data cache.

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:2170

 Get Location

Fig.1 HDFS architecture

Every node is created with its own data cache. All caches are connected with each other to

form a global cache. NameNode acts as central co-coordinator of cache, but it allows the

cache manager to decide for selecting the remote cache on DataNodes. New approach allows

efficient use of resources instead of using more number of nodes. So to improve the

performance, more slots are to be added.

The organization of the paper is as follows; Section 2 describes related work, Section 3

explains the system architecture, Section 4 provides Proposed system, Section 5 explains the

Experimental Results and Section 6 presents conclusion and future work followed by

acknowledgement and references.

2. Related Work

Hadoop collaborative caching aims to improve the performance of Map Reduce Tasks.

With local cache in every node to reduce the data access latency. Caching only part of the

input will not help in improving the performance [1]. Rather performance can be improved

only if the cached block is used fully [4]. The Adaptive Replacement Cache (ARC) algorithm

dynamically balances recency and frequency by using two Least-Recently Used (LRU)

queues in response to changing access patterns [10]. Collaborative caching is a caching

service that coordinates access to the distributed caches [2]. This service aims at minimizing

total execution time of job by evicting those items whose inputs are not completely cached.

For evicting the inputs which have been minimally used, Modified Adaptive Replacement

cache algorithm has been proposed.

Hadoop collaborative caching techniques added with new functionalities consists of five

components. The components are Cache manager, Global Cache Image, Data Node,

NameNode. The cache manager is responsible for managing caches by performing lookup in

Clients
NameNode Namespaces

Metadata

Filename,

Index

Global Cache

Image
RACK RACK

Slaves (DataNodes)

Data

Access

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:2171

local as well as global cache image. Upon Request from cache manager, replacement policy

for cache is applied when cache is fully utilized [9]. Currently hadoop uses first in first out

replacement policy. Hadoop collaborative caching, a proposed methodology is used to

improve the performance of MapReduce jobs. This caching technique places the data on data

nodes by using cache managers. This technique uses LRU caching with prefetching

mechanism to enhance the job performanace[2]. In simple collaborative scheme, if there is a

local cache miss, then DataNode notifies DFSClient of the next cached DataNode to access

the data. This paper also explains the Modified ARC. Basic mechanism is to separate the

caches into two different parts namely cached items and history items [11]. Cached items

having the actual data and history part contains the references of cached data. Hence the

cached part is further divided into Recent Cache with its Recent History and Frequent Cache

with its Frequent History. A Recent cache is a cache where the block accessed for the first

time is placed. A second reference to the same data will cause the block to be placed in the

frequent cache [9]. The design includes prefetching by looking up, neighboring blocks for a

request. If neighboring blocks are missing then cache requests NameNode to look for replicas

and if available, requests are sent to DataNode to cache blocks [19]. Cache hit ratios can only

be tested for 350 -650 MB which is the major limitation. Least Unified value uses the

complete reference history of documents in terms of reference frequency [12]. It allows a

better implementation in both space and time complexity. This LUV replacement policy

follows the heap data structure, so time complexity is O (log2n), where n denotes the number

of elements in the cache[13].

A cache replacement strategy decides which object to evict from the cache when no space

is available to store additional objects. It is based on several factors: recency, frequency, cost

for fetching and size. To determine the effectiveness of a replacement strategy, certain

metrics are measured such as the cache hit ratio, byte hit ratio, delays [18]. However for the

Least Recent Value (LRV) algorithm, the time complexity varies according to the

performance measures. While the algorithm is efficient for the byte hit rate measures, for

other measures the complexity of algorithm is O(n). For this reason, a recent version LRV

restricts their optimization of the algorithm to only byte hit rate measure [14] .For Caching

algorithm to be practical, it is important that the time complexity of the algorithm should not

be excessive, preferably not higher than O(log2n) , where n is the number of data in the

cache[9].Adaptive replacement policy which has low overhead on system and is easy to

implement. This model is named Weighting Replacement Policy (WRP) which is based on

ranking of the pages in the cache according to three factors, such as cache hit, byte hit rate,

data size [8] LFU works based on how many times page has been referenced and it selects

the least number referenced page [3].LRU fails when recently used block is not used

frequently. It cannot deal with larger than available cache size [16].

3. System Architecture

 The proposed system architecture explains about working of HDFS with LUV

replacement policy. Initially the client requests for block locations to the NameNode. The

Namenode act as coordinator of datanodes. The namenode reports to the cache manager for

accessing the data from cache. If data is not available in local cache then it contacts Global

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:2172

Cache Image for remote access of data .In case cache is fully utilized, LUV replacement

policy is used to evict the items from cache. The working of the proposed system is shown in

Fig.2

3.1 Cache Manager

 Every datanode is provided with their cache managers who have responsibilities to

manage the local caches as well as global cache. Replacement policy and eviction policy is

applied when cache is fully used. A buffer is maintained to cache the file references consists

of metadata and application data. Data blocks in the caches are replaced or evicted when

cache is full. Replacement method applied here is LUV. In cache the data blocks are arranged

based on the value calculated from past reference history and data access time.

3.2 DataNode

 DataNode provides a cached block report of its local cache to NameNode after

periodic interval. As a response to this report NameNode commands DataNode to update

global cache image.

3.3 NameNode

 NameNode manages datanode cache by piggybacking cache and uncache

commands on the DataNode heartbeat. The namenode asks its cache directives from user to

determine which paths should be cached. It also stores the set of cache pools which are

administrative part used to group the cached items for resource management.

3.4 DFS client

 DFSclient can connect to the Hadoop file system and perform some fundamental

tasks. To get the block locations for a particular file, it has to contact with NameNode. For

every request, it provides the result for cache locations and non-cache locations. After receive

the cache locations, and then it obtains the list for reading the cached block.

3.5 Global Cache Image

 It maintains the metadata for cached block in datanode. If data is not found in the

local cache , then cache manager lookup the global cache image check if data is available or

not.

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:2173

 Cached report Node Heartbeat

Fig.2 Proposed system Architecture

GCI – Global Cache Image

CM – Cache Manager

4. Proposed System

4.1 Caching Scheme

 In order to reduce the execution, it introduces the collaborative caching with LUV

replacement policy. It improves the performance of Hadoop when compared to the other

replacement policies. The proposed system uses collaborative caching with Least Unified

Value replacement algorithm. It works based on the object value which is calculated from

past reference history of the data item. Every data item in cache has unique object value and

is stored in heap order. The eviction is applied based on the object value. The proposed

caching scheme using LUV approach reduces the time of execution of the MapReduce job.

 The Name Node in the Hadoop system is responsible for getting file locations from

Namespaces to NameNode reports to the cache manager check whether the data is available

or not. If data is present in the cache, it returns the blocks.

Clients
NameNode Namespaces

Global Cache

Image

CM

M

GCI

Least Unified value

Value

A B C

CM

GCI

Least Unified

value

A B C

Cached

locations Master

Get location

Slaves (DataNodes)

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:2174

 In case of a Cache miss, the cache manager receives the request from NameNode to

access the file from the disk and add block to the local cache The blocks in cache are

maintained in form of a heap. While adding the data in the cache ,it immediately calculates

the value based on the past reference history and request time of particular data. Based on

calculate value, blocks are stored in a heap. Based on the value only the eviction policy is

applied for replacement. The lower value must be evicted first from the cache. The parameter

mainly used for calculating is relative cost and probability of request of k times.

4.2 Least Unified Value Algorithm

 The basic idea behind is to calculate the values from past reference history and

request time. The data structure maintained here is heap data structure. So the datas are

arranged in heap order in cache [7].

Working of Least Unified Value

• Initially client requests for block, the NameNode issues the correct block location of

metadata.

• The cache manager searches the requested data block in local cache, if it is not present

then go for remote cache.

• If cache miss occurs in the both the cache, data would be accessed from disk and added

to the cache.

• If cache is fully utilized, Least Unified value replacement policy is applied.

 The following equation represents the object value,

 V(i) = W(i).p(i) (1)

 W (i) - Relative cost to fetch the object from its original server

 P(i) - Probability for interval between current access time and last reference time.

 W (i) = c(i)/s(i) (2)

 c(i) - fetching cost of object i from the server

 s(i) - size of object

p(i) = (3)

 tc
 - Current access time.

 tk
 - the oldest request time in a window of k request times

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:2175

4.3 Working of Least Unified value algorithm

 It initially checks the data present in the local cache and valid state. If it available,

then the LUV value for the data object is calculated. Adding this value to the heap, it follows

the heap rules. If it is not in the local cache access data from the remote cache. In the

situation of data is not available in the cache, cache manager reports NameNode with cache

miss.

Fig.3 Flowchart for LUV replacement policy

In such a case the data should be accessed from disk and a new heap value is calculated. The

block is inserted and the heap is adjusted according to the heap rules. In case the cache is full

then minimum value is replaced by new data item and heap is adjusted. The proposed

replacement algorithm for cache is shown in Fig 4.

NameNode

Client

It checks
the data in

cache
Cache Manager

Access the
data from cache

Add the
referenced data
from next level

Checks for space
available in

cache

Apply
Replacement

policy to evict the
data from cache

Add the data
to cache

Yes

No
Cache Miss

Cache hit

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:2176

Fig.4 New algorithm for LUV in Hadoop

5 Experimental Results

The experimental results have been carried out in a hadoop cluster of 7 nodes with 2 cpu’s

with Word Count Application .This application is used to find the frequency of words present

in the given input. By using “Inbuilt time” command in Linux, we analyze the results for

various inputs. Experiment was repeated for varying file system from 100 MB to 1000 MB. It

was conducted for block size of 128 MB. Table 1 and Table 2 shows the result of MapReduce

job for the given sample files.

The master node act as both master as well as slave. Master node also contains datanode to

store the application data. Caching part is present in the both master and slave node together

to form as single cache. This improves MapReduce job performance .Local data is accessed

when jobs are executed in same node as input. Remote access occurs when the data is present

in the cache of nodes than the input. Local data access is better than remote access. In case of

 Dx = Data object

 Mx = Message for data object

 Dy = Data object to be replaced

 LUV = Value calculated for the data object’

 L = minimum value

 if Dx is in local cache

 Calculate the LUV value

 Return to the client

 Else if Dx is in remote cache

 Calculate the LUV value

 Return to the client

 Else Dx is not in the cache

 Then cache miss occurs

 Access the data from disk

 Calculate the LUV value

 Checks for the space available in Cache

 If there is no enough space

 Find min value = L

 Evict the object which contains

 LUV value=L

 Bring dx into cache

 Return Dx to the client

 Else

 Calculate the LUV value

 Add the data iem to the cache

 Return dx to the client

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:2177

collaborative caching all nodes are provided with cache. If file size increases more blocks are

present and hence the cache can get full. Replacement algorithm is used to evict the items

from the cache. Least Unified Value as is used as

replacement algorithm. It reduces the execution time for MapReduce jobs.

5.1 MapReduce Without caching

Table I shows that the results obtained from MapReduce job execution time. The results are

taken from existing

Hadoop

framework. Here the jobs

are executed in default

Hadoop system

 Table 1 MapReduce Job Time without caching

5.2 MapReduce With Caching

Table II explains about MapReduce job execution time for given sample files. From the

above results we conclude that collaborative caching with LRU replacement produces the

better results compared to the existing system.

Table 2 MapReduce Job Time with caching (LRU)

S.no File size

Single node

cluster (msec)

Multi node

Cluster(msec)

1 100 KB 164 69

2 500 KB 245 119

3 100 MB 336 272

4 500 MB 498 421

5 1 GB 1090 1034

6 2 GB 1790 1557

7 3 GB 2643 2341

S.no File Size Single node

cluster(msec)

Multi node

Cluster(msec)

1 100 KB 285 165

2 500 KB 362 278

3 100 MB 450 321

4 500 MB 734 592

5 1 GB 1254 1189

6 2 GB 1980 1760

7 3 GB 2876 2512

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:2178

 Fig 5. Job execution time with / without caching on Hadoop (Single node Cluster)

 Fig 6. Job execution time with / without caching on Hadoop (Multi node Cluster)

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:2179

The Table 3 shows that results obtained from proposed caching system for given various

sample input files. It concludes that the proposed replacement policy produces better results

compared to the existing system.

Table 3 Time Comparison between Hadoop-LUV and Hadoop-LRU

S.No File Size

Hadoop –

No cache (msec)

(Existing)

Hadoop-

ARC(LRU)

(msec)

(Proposed)

Hadoop-LUV (msec)

1 100 KB 165 132 69

2 500 KB 278 185 119

3 100 MB 321 311 272

4 500 MB 592 518 421

5 1GB 1189 1121 1034

6 2GB 1760 1640 1557

7 3 GB 2512 2412 2341

Following graph shows that the MapReduce job execution time. It shows a comparison of

MapReduce jobs carried out on Hadoop-ARC and Hadoop-LUV. The MapReduce Job

carried out was to read files which varied in size. Graph clearly shows that Hadoop-LUV

performs better as compared to both Hadoop-ARC.

Fig.7 MapReduce job execution time for multi node cluster

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:2180

5.3 LUV Replacement Strategy

 The Table 4 shows that presence of data in cache based on the calculated LUV value.

The cache size used here is 1GB. The cache is divided into several blocks of size 128 MB.

The data are stored in the blocks according to that size.

Table 4 Before LUV Replacement

 Table 5 After LUV Replacement

The replacement of data happens ,when cache is fully utilized. Every data present in the

cache based on the Calculated LUV value. When cache is fully utilized the lower value of

data is replaced by newer one. For example: After run the data5 file in Hadoop , it replaces

the expired files in the cache when cache is fully utilized. The Table 5 shows that data5

replaces the files present in the cache which was expired.

5.4 Block Replacement

5.4.1 Least Recently Used (Existing)

 The Fig 7 shows that how the LRU replacement is done. Least recently used data will

be replaced when cache is fully used. Cache size is 1GB. The cache is divided into blocks of

128 MB size. Fig 6 shows that initially D4 is accessed from the memory and it is cached. Fig

7 explains the replacement of data D7. It is least recent value among other data present in the

cache.

Id Pool name Expiry File name

1 Pool1 Never Data1

2 Pool1 Never Data2

3 Pool1 Never Data3

4 Pool1 Never Data4

Id Pool name Expiry

time

File name

1 Pool1 14.30 pm Data1

2 Pool1 14.38 pm Data2

3 Pool1 14.42 pm Data3

4 Pool1 Never Data4

5 Pool1 Never Data5

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:2181

Fig.8. Accessing Data from Disk

 Fig.9. Data Replacement using LRU

5.4.2 Least Unified Value (Proposed)

The fig 8 shows that working of LUV replacement policy. Every data should provide

with calculated object value based on the past reference history. The object values are

arranged in the heap order. Lower values should be evicted from cache. In Fig.8 shows

accessing of data from the disk and cached it. Fig.9 explains about replacement of data D1

using LUV technique.

Fig.10. Accessing of data from disk

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:2182

Fig.11. Data Replacement Using LUV Technique

6 Conclusion and Future Work

This work summarizes about the Hadoop collaborative caching with Least Unified value

replacement algorithm. The proposed architecture is named as Hadoop collaborative caching

.The main objective of the architecture is to reduce the execution time of MapReduce job

execution time and to increase the efficiency of the system .It was done by collaborative

caching where data is access from local cache as well as global cache. Every datanode

contains their dedicated cache managers which are responsible for caching data and it follows

the Least Unified Value Cache replacement policy. Every data in the cache has an object

value which is calculated by using past reference history of the particular data item and

request time of object. The data are arranged in heap order based on the calculated object

value. This mechanism is helps better caching for replacement. Hence it improves the overall

performance of the MapReduce job execution time. Next is to enhance this system to large

clusters with LUV replacement policy.

7 References

[1] Aline Zeistunlian and Ramzi A.Haraty , An Efficient Cache Consistency Approach, World

Academy of Science ,Engineering and Technology ,Vol:4 march (2014)

[2] Ananthanarayanan .A.W.D.B.S.K.S. S. G, A. Ghodsiand I. Stoica. ”Pacman: Coordinated

memory caching for parallel jobs”, In NSDI, (2012)

[3] Belady. L. A., “A Study of Replacement Algorithms for a Virtual Storage Computer,” IBM

systems J.vol. 5, no.2, pp.78-101, (1966)

[4] Christer A. Hansen. “Optimizing Hadoop for the cluster”University of Troms, Norway

[5] David Leong, Collaborative Object Caching for Heterogenous OSD Clusters, Proceedings

of the Computer Science and IT Education Conference,pp.425-436, (2007)

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:2183

[6] Dawei Jiang, Beng Chin Ooi, Lei Shi Sai Wu, ”The Performance of the VLDB

Endowment,Vol.3,No1.36th International Conference on Very Large Data Bases, September

13-17, (2010), Singapore.

[7] Hyokung bahn,sam H Noh,Sang Lyul Min “Using Full Reference history for efficient

Document Replacement in

 Webcaches”,Dec (2012)

[8] Kaveh samie ,”A Replacement Algorithm Based on Weighting and Ranking Cache Objects”,

International journal of hybrid Information Technology, vol.2 No.2,April,(2009)

[9] Lee.D Choi.J,Kim.J, S.H.Noh ,S.L Min,Y .cho , and C.Kim,”On the Existence of a Spectrum

of Policies That Subsumes the LRU and LFU Policies,” In Proceedings of the 1999 ACM

SIGMETRICS Conference,pp.134-143,(1999)

[10] Megiddo.N and Modha.D.S, “Arc: A Self-Tuning,Low Overhead Replacement Cache,” Proc.

Second USENIX Conf. File and Storage Technologies, (2003)

[11] Megiddo, N. et.al Outperforming LRU with an adaptive Replacement Cache, Computer

IEEE April (2004)

 pp.58-65

[12] Meenakshi Shrivastava and Hans-Peter Bisch of Hadoop-Collaborative Caching in Real

Time HDFS (2012).

[13] Padmapriya.V and Thenmozhi.K,” Web caching and response time optimization based on

eviction method”, International journal of innovative research in science, Engineering and

Technology,vol.2,issue 4,april (2013)

[14] Rizzo.L and Vicisano.L ,”Replacement policies for a proxyCache”,TechnicalReport UCL-

CSRN/98/13,(1998)

[15] SenthilKumar.K.,SatheesKumar.K and Chandrasekaran ,”Performance Enhancement of Data

Processing using Multiple Intelligent Cache in Hadoop,” International Journal of Innovatoins

in engineering ant Technology,ISSN: 2319 – 1058,Vol.4 Issue 1,June, (2014)

[16] Song Jiang and Xiaodong Zhang ,”LIRS: An Efficient Replacement Policy to improve

Buffer Cache Performance,” National Science Foundation,Dec (2005)

[17] Tom White ,Hadoop:The Definitive Guide, OReilly Media,Inc.,June (2009).

 [18] Xu, J. and Hu, Q. (2001). An Optimal Cache Replacement Policy for Wireless Data

Dissemination Under Cache Consistency. IEEE. pp.267-274

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:2184

[19] Yaxiong Zhao*, Jie Wu and Cong Liu ,”Dache: A Data Aware Caching for Bigdata

applications Using MapReduce Framework,” Tsinghua science and Technology,ISSN 1007-

0214 05/10 p39-50 ,vol 19,No.1 Feb(2014)

[20] [Online] http://en.wikipedia.org/wiki/Apache Hadoop

[21] [Online] http://Hadoop.apache.org/docs/r0.20.2/hdfs design.html.

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:2185

http://hadoop.apache.org/docs/r0.20.2/hdfs%20design.html

