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Abstract

In order to investigate the impact of pollution on a three species ratio dependent food
chain system, a nonlinear mathematical model is proposed and examined in this research.
The primary mathematical model is broken down into submodels in order to study the impact
of pollutants. It is assumed in the model that the pollutant has direct adverse impacts on
all biological species in the three species food chain system. The models’ stability analysis is
completed, and the outcomes provide the necessary circumstances for the populations’ survival
and extinction under the pressure of contaminants. Each possible equilibrium is subjected to a
local and global stability study. According to the study, chaotic and limit cycle behaviour may
not be identified due to the amount of contaminants present in the biological system. With
regard to crucial factors for non-trivial equilibrium locations, a Hopf bifurcation analysis has
been conducted. Additionally, numerical simulations are used to support our analytical results.
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1. Introduction:

Pollutants in the environment have an impact on the biological populations in both terrestrial
and aquatic ecosystems, and ecologists continue to face challenging challenges in addressing the
issues posed by the presence of pollutants in an ecosystem. Pollutants and toxicants typically slow
the growth rate and carrying capacity of biological species. The general goal of ecologists and
environmentalists is to prevent the extinction of species and to maintain the diversity of species in
the stressed ecosystem.

For studying prey-predator food chains and predicting the survival or extinction of species,
mathematical models have recently become essential tools and methodologies [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13]. The dynamical study of prey and the animal of prey have long been and will
have continued to be the governing topics in the field of ecology due to its popular existence and
significance [14, 15, 16].

The dynamical systems embroiled the mathematical modeling of predator prey problems may
seem to be elementary; however, the detailed study and analysis of these prey predator systems
often initiate convoluted as well as challenging problems. The fundamentals of modeling in popula-
tion of ecosystem are to reveal the concerned prey predator mathematical model can disclose under
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2 THE MATHEMATICAL MODEL: 2

certain considerations of well system behavior. The dynamical modeling of prey predator ecological
systems is often evolving the procedure. A structured prey predator mathematical model approach
can proceed towards a clear apprehension of the feasible lead to the indispensable modifications
[16, 17].

A few authors have also used mathematical models to understand the ratio-dependent predator-
prey systems [18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30]. The logistic equation is generally
considered to be the prey’s growth in these mathematical models of predator and prey that use
ratio-dependent functional responses, however other writers have included the idea of the Allee
effect in the prey growth function and analysed the ratio-dependent models [20]. In the last few
years, a lot of research has been done using mathematical models to examine the dynamic behaviour
of tri-trophic level food chains [31, 32, 33, 34]. Toxicants’ effects on biological populations in a
polluted environment have, however, been the subject of a number of studies over the past ten
years, utilising mathematical models [35, 36, 37, 38, 39, 40]. There is a example of the marine
considering three species food chain ecosystem of algae zooplankton molluscs, [42] in the research
the authors have discussed the food–chain of nonlinear dynamics of algae/phytoplankton toxin
emission on the system.

Also there is a another marine example could be observed the tri species food chain ecosystem
composed of phytoplankton zooplankton fish, [43] the researchers have learnt that the grazing
pressure of zooplankton species reduces due to the toxin producing phytoplankton and also observed
from study that the dynamics of food–chain systems perform very less chaotic behaviour.

In order to examine the effects of pollutants, this work proposes and analyses a mathematical
model of a food chain system that depends on the ratio of three species. Analytical analysis of the
model and numerical simulations of the outcomes are performed.

2. The Mathematical Model:

To examine the impact of toxicant in the ecological food chain model, the system of differential
equations listed below is taken into consideration. The model was developed in light of [41] and
included the effect of toxicant concentration, which has an immediate impact on the species. The
model’s food chain model is made up of the following state variables: Prey’s density is X(t);
intermediate predator species density is Y (t); top predator species density is Z(t); and toxicant
concentration C(t). Model makes the assumption that the concentration of toxicants directly
affects each species.

The parameter bi in the model specifies impact of the intra species competition for sustenance.
In the logistic growth model, the carrying capacity is denoted by the ratio ai/bi = Ki. The
parameter ci denotes the influence of an individual at a lower trophic level, whereas di denotes
the influence of an individual at a higher extent trophic on the species’ per capita development
(consider i=1, 2, and 3).

The terms d1Y/(γ1+X) and d2Z/(γ2+Y ) which are Holling type II functional responses—define
the existence of alternate prey for the predators. The number ei represents the species death rate
as a result of the unbroken toxicant concentration (consider i=1, 2, and 3). The rate at which the
toxicant is thought to wash out is supposed to be α, and the rate at which trophic-level species
perish as a result of the toxicant concentration is β. The harmful substance’s external input into
the environment is Q0.

The dynamics of the feeding interactions of food chain in a three-species model with a toxicant
are controlled by the system of equations:

Model-A:

dX

dT
= X

(
a1 − b1X −

d1Y

γ1 +X
− e1C

)
dY

dT
= Y

(
a2 − b2Y −

Y

c2X
− d2Z

γ2 + Y
− e2C

)
(1)
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dZ

dT
= Z

(
a3 − b3Z −

Z

c3Y
− e3C

)
dC

dT
= Q0 − αC − β(X + Y + Z)C

and X(0), Y (0), Z(0) > 0, C(0) = 0.
By using the following scaling changes, the number of parameters in the aforementioned system
(1) can be decreased:

x = X
K1
, y = d1Y

a1K1
, z = d1d2Z

a21K1
, c = d1C

a1
, t = a1T.

Then, the equations in the Model-A take the non-dimensionalized form.:
Model 1:

dx

dt
= x(1− x)− xy

u1 + x
− v1xc (2)

dy

dt
= y

(
u2 − u3y −

u4y

x

)
− yz

u5 + y
− v2yc (3)

dz

dt
= z

(
u6 − u7z −

u8z

y

)
− v3zc (4)

dc

dt
= q0 − α1c− (β1x+ β2y + β3z)c (5)

and x(0), y(0), z(0) > 0, c(0) = 0.
In this case, the non-dimensional parameters are

u1 = γ1
K1
, u2 = a2

a1
, u3 = b2K1

d1
, u4 = 1

d1c2
, u5 = γ2d1

a1K1
, u6 = a3

a1
,

u7 = a1K1b3
d1d2

, u8 = 1
d2c3

, v1 = e1
d1
, v2 = e2

d1
, v3 = e3

d1
, q0 = Q0d1

a21
,

α1 = α
a1
, β1 = βK1

a1
, β2 = βK1

d1
, β3 = a1K1β

d1d2
.

By simply taking into account intraspecies competitions for the top prey, Model 1 is made simpler
i.e., u3 = u7 = 0 (b2 = b3 = 0 in Model A). Additional parameter reductions are made, and Model
1 uses non-dimensionalized equations:
Model 2:

dx

dt
= x(1− x)− xy

u1 + x
− v1xc (6)

dy

dt
= y

(
u2 −

u4y

x

)
− yz

u5 + y
− v2yc (7)

dz

dt
= z

(
u6 −

u8z

y

)
− v3zc (8)

dc

dt
= q0 − α1c− (β1x+ β2y + β3z)c (9)

and x(0), y(0), z(0) > 0, c(0) = 0.

[41] To investigate the interacting system’s long-term dynamic dynamics (6)–(9), two separate
systems make up the system.
Subsystem 1 of Model 2: The subsystem 1 is obtained by assuming the absence of top predator
population:

dx

dt
= x(1− x)− xy

u1 + x
− v1xc (10)

dy

dt
= y

(
u2 −

u4y

x

)
− v2yc (11)

dc

dt
= q0 − α1c− (β1x+ β2y)c (12)
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Subsystem 2 of Model 2: When there is non-trivial equilibrium in the prey population, the
subsystem 2 is obtained (x = ¯̄x):

dy

dt
= y

(
u2 −

u4y
¯̄x

)
− yz

u5 + y
− v2yc (13)

dz

dt
= z

(
u6 −

u8z

y

)
− v3zc (14)

dc

dt
= q0 − α1c− (β1 ¯̄x+ β2y + β3z)c (15)

Numerical simulations are used to discuss and examine the dynamic behaviour of these two sub-
systems [41].

3. Analysis of Model 1

3.1. Boundedness of the Model 1

In this section, we will evaluate Model 1 and require the boundaries of the related dependent
variables. Therefore, the following lemma contains the region of interest for the Model 1.
Lemma: The set

Ω1 = {(x, y, z, c) ∈ R4
+ : 0 ≤ x(t) ≤ 1, 0 ≤ y(t) ≤ yM , 0 ≤ z(t) ≤ zM ,

0 ≤ c(t) ≤ cM ,W1(t) ≥WL}

where φ1 = max{1 + u2/u3 + q0v1/α1, (u3 + u4)u2/u3 + u6/u7 + q0v2/α1, (u7 + u8)u6/u7 +
q0v3/α1, α1 +β1 +β2u2/u3 +β3u6/u7}, is an area where solutions that start in the positive region’s
interior are drawn to.
Proof: Starting with (2) we get, dx/dt ≤ x(1− x) then using comparison theorem, we obtain as
t→∞,

x ≤ 1

Let’s take a look at the result of the equation (3), now

dy

dt
≤ y(u2 − u3y)

then, using the standard comparison theorem, we arrive at t→∞,

y ≤ u2

u3
= yM .

Let’s take a look at the result of the equation (4), now

dz

dt
≤ z(u6 − u7z)

as a result, using the standard comparison theorem, we obtain at t→∞,

z ≤ u6

u7
= zM .

Let’s take a look at the result of the equation (5), now

dc

dt
+ α1c ≤ q0

as a result, using the standard comparison theorem, we obtain at t→∞,

c ≤ q0

α1
= cM .

Let’s explore the subsequent function now:

W1(t) = x(t) + y(t) + z(t) + c(t)
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3 ANALYSIS OF MODEL 1 5

by using equations (2) to (5), we get

dW1

dt
+ φ1W1 ≥ q0

where φ1 = max{1 + u2/u3 + q0v1/α1, (u3 + u4)u2/u3 + u6/u7 + q0v2/α1, (u7 + u8)u6/u7 +
q0v3/α1, α1 + β1 + β2u2/u3 + β3u6/u7} as a result, using the standard comparison theorem, we
obtain at t→∞,

W1 ≥
q0

φ1
= WL

Therefore, the Model 1 solution is bounded in Ω1.

3.2. Equilibria of Model 1

There are four positive equilibria in the “Model 1" x, y, z and c, Ê10(0, 0, 0, ĉ), Ë11(ẍ, 0, 0, c̈),
Ẽ12(x̃, ỹ, 0, c̃) & Ē13(x̄, ȳ, z̄, c̄). Let’s establish the validity of Ê10, Ë11, Ẽ12 and Ē13 as follows:

• The existence at Ê10 = (0, 0, 0, ĉ)
from (5),

ĉ =
q0

α1
(16)

• The existence at Ë11(ẍ, 0, 0, c̈),
begin with (2),

ẍ = 1− v1c̈ (17)

ẍ > 0 if 1 > v1c̈,
from (5) we get

β1v1c̈
2 − (α1 + β1)c̈+ q0 = 0 (18)

then the positive root of (18) is

c̈ =
(α1 + β1) +

√
(α1 + β1)2 − 4q0β1v1

2β1v1
> 0

c̈ > 0 if (α1 + β1)2 > 4q0β1v1, and α1 < q0v1.

• The existence at Ẽ12(x̃, ỹ, 0, c̃),
considering (3) and (2),

y =
x(u2 − v2

v1
+ v2

v1
x)

(xu3 + u4 − v2
v1

x
u1+x )

= f1(x) (19)

from (2),

c =
1

v1

(
1− x− f1(x)

u1 + x

)
= f2(x) (20)

Let
F (x) = q0 − α1f2(x)− (β1x+ β2f1(x))f2(x) (21)

Then we note that
F (0) = (q0v1 − α1)/v1 > 0 (22)

if q0v1 > α1 and

F (k0) = q0 − α1f2(k0)− (β1k0 + β2f1(k0))f2(k0) < 0 (23)

The presence of a root is therefore assured F (x) = 0 for 0 < x < k0, suppose x̃. Additionally,
this root will be distinct if

F ′(x) = −α1f
′
2(x)− [(β1x+ β2f1(x))f ′2(x) + f2(x)(β1 + β2f

′
1(x))] < 0 (24)

Understanding the importance of x̃, then the values of ỹ and c̃ is calculable from equations
(19) and (20) respectively.
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• The existence at Ē13(x̄, ȳ, z̄, c̄),
from (2),

c =
1

v1

(
1− x− y

u1 + x

)
= g1(x, y) (25)

from (5),

z =
1

β3g1(x, y)
(q0 − α1c− (β1x+ β2y)c) = g2(x, y) (26)

Now, have a look at two functions,

G11(x, y) = (1− x)(u1 + x)− y − v1c(u1 + x) + (u6 − u7z − v3c)

+ (u5 + y)(x(u2 − u3y)− u4y − v2cx)− (u8 + x)z = 0 (27)
G12(x, y) = q0 − α1c− (β1x+ β2y + β3z)c

+ y(u6 − u7z − v3c)− u8z = 0 (28)

For the existence at x̄ and ȳ, then two isoclines,

G11(x, y) = 0 (29)

G12(x, y) = 0 (30)

should cross.
The fact that

G11(0, 0) = G12(0, 0) =
u8

β3
(α1 − q0v1) > 0

if α1 > q0v1. Also,
G11(0, y) = 0 then y a single positive root (ψ1 suppose), is determined by the cubic equation
of y,

D11y
3 +D12y

2 +D13y −D14 = 0

where
D11 = β3(u4 + β2u7)− v3β3/v1u1,
D12 = α1u7 + β3u4u5 + u8β2β3 + 2v3β3/v1 − β3(u1u4 + u6 + β2u1u7),
D13 = u1β3(1 + u6 − u4u5)− u1v3β3/v1 + v1u1q0u7 + α1u8 − α1u1u7 − β2β3u1u8,
D14 = u1(α1u8 + u1β3)− q0v1u1u8.
Here, D11 > 0, D12 > 0, D13 > 0 and D14 > 0.
G11(x, 0) = 0 then x a single positive root (ψ2 suppose), is determined by the cubic equation
of x,

D15x
3 +D16x

2 +D17x−D18 = 0

where
D15 = β1 + β3v2u5/v1,
D16 = α1 + β1u8 + u2u5β3 − 2v2β3u5/v1,
D17 = q0v1 − α1 + α1u8 − β1(1 + u8) + v2β3u5/v1 − u2u5β3,
D18 = u8(α1 − q0v1).
Here, D15 > 0, D16 > 0, D17 > 0 and D18 > 0.
G12(0, y) = 0 then y a single positive root (ψ3 say), is determined by the cubic equation of
y,

D21y
3 +D22y

2 +D23y −D24 = 0

where
D21 = (β2 + v3)/v1u

2
1 + β2(u7 − β3/v1u1)/(u1β3),

D22 = u6/u1 +β2(u8 +β3/v1)/(u1β3)+(u7−β3/(v1u1))(α1/u1−β2)/β3− (β2 +v3)/(v1u1)−
(β2 + v3 − α1/u1)/(v1u1),
D23 = (u8 + β3/v1)(α1/u1 − β2)/β3 − (u7 − β3/v1u1)(α1 − v1q0)/β3 + q0/u1 + (β2 + v3 −
α1/u1)/v1 − u6 − α1/v1u1,
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Fig.4.1

D24 = (u8 + β3/v1)(α1 − v1q0)/β3 − (α1 − v1q0)/v1.
Here, D21 > 0, D22 > 0, D23 > 0 and D24 > 0.
G12(x, 0) = 0 then x =

√
(α1−v1q0)

β1
if α1 > v1q0 then the root (ψ4 suppose).

Consequently, two isoclines cross each other in the area

M = {(x, y) : 0 < x < ψ4, 0 < y < ψ1}

in the two following situations: (see Fig.4.1)

Case(i) : ψ1 > ψ3, ψ4 > ψ2 (31)

Case(ii) : ψ1 < ψ3, ψ4 < ψ2 (32)

This junction will result in x̄, ȳ. For distinctiveness of (x̄, ȳ), we must have dy
dx < 0 regarding

both of the region’s curves M .
For curve (29),

dy

dx
=

Φ12 − (v1c+ z) + Φ11

v1
(1− y

(u1+x)2 )

Φ14 + 1− (u6 − u7z − v3c)− Φ13 − Φ11

v1(u1+x)

< 0 (33)

and for curve (30),
dy

dx
=

Φ21

v1
(1− y

(u1+x)2 )− β1c

β2c− (u6 − u7z − v3c)− Φ21

v1(u1+x)

< 0 (34)

where,
Φ11 = v1(u1 + x) + (v2x+ v3y)− (x+ u7y + u8) q0

c2β3
,

Φ12 = (y + u5)(u2 − u3y − v2c) + (1− u1 − 2x),
Φ13 = x(u2 − u3y)− (u4y + v2cx),
Φ14 = (y + u5)(u4 + xu3),
Φ21 = (α1 + xβ1 + y(β2 + v3) + zβ3)− (cβ3 + u7y + u8) q0

c2β3
.

In case (i), the exact value of dy
dx given by (33) is lower than the absolute value of dy

dx given
by (34). For the case (ii), the situation is the exact opposite.
Having knowledge of x̄, ȳ; z̄ and c̄ is calculable from the equations (25)-(26).

3.3. Stability of Equilibria of Model 1

The eigenvalues of the variational matrix surrounding each equilibrium are calculated in order
to ascertain the local stability of each equilibrium in Model 1.
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According to Model1, the general variational matrix is

J1 =


c11 − x

x+u1
0 −xv1

u4y
2

x2 c22 − y
y+u5

−yv2

0 u8z
2

y2 −z(u7 + u8

y ) + f33 −zv3

−β1c −β2c −β3c −(α1 + β1x+ β2y + β3z)


where, c11 = −x(1− y

(u1+x)2 ) + f11, c22 = −y(u3 + u4

x −
z

(u5+y)2 ) + f22, f11 = 1− x− y
u1+x − v1c,

f22 = u2 − u3y − u4y
x −

z
u5+y − v2c, f33 = u6 − u7z − u8z

y − v3c.
In light of this, the examination of linear stability regarding the equilibrium points Ë11, Ẽ12 and
Ē13 produces the following outcomes:

• At the point Ë11, in the characteristic equation, there are two eigenvalues: u2 − v2c̈ and
u6 − v3c̈ and the roots of the following equation yield the other two eigenvalues:

λ2 + λK11 +K12 = 0 (35)

where, K11 = α1 + (1 + β1)(1− v1c̈) > 0, K12 = (1− v1c̈)[α1 + β1 − 2β1v1c̈] > 0.
Equation using the Routh-Hurwitz criterion (35), it has been noted that Ë11 assuming that
is locally asymptotically stable K11 and K12 are positive, i.e., (α1 + β1ẍ) > β1v1c̈, c̈ > u2

v2
,

c̈ > u6

v3
and 2α < βK1.

Remark 1: According to the stability and from its conditions of the equilibrium Ë11, the
following biological phenomenon is noted to occur when the twice of wash out rate of toxic
is less than the multiply of the death rate of the species in the three level chain due to the
toxicant concentration and the carrying capacity of the species: the prey population will
survive and the predator population in the food chain will tend to/go extinct.

• At the point Ẽ12, we observe that one of the characteristic’s eigenvalues is u6 − v3c̃, i.e.,

c̃ >
u6

v3

where the other three eigenvalues are determined by the following equation’s roots:

λ3 + λ2Q11 + λQ12 +Q13 = 0 (36)

where,
Q11 = (α1 + β1x̃+ β2ỹ) + x̃(1− ỹ

(u1+x̃)2 ) + ỹ(u3 + u4

x̃ ) > 0,

Q12 = u4ỹ
2

x̃(u1+x̃) + x̃ỹ(1− ỹ
(u1+x̃)2 )(u3 + u4

x̃ ) + (α1 + β1x̃+ β2ỹ)(x̃(1− ỹ
(u1+x̃)2 ) + ỹ(u3 + u4

x̃ ))−
x̃c̃v1β1 − ỹc̃v2β2 > 0,

Q13 = ( u4ỹ
2

x̃(u1+x̃) + x̃ỹ(1− ỹ
(u1+x̃)2 )(u3 + u4

x̃ ))(α1 + β1x̃ + β2ỹ) + ỹc̃v2β1
x̃

u1+x̃ − x̃ỹc̃v1β1(u3 +

u4

x̃ )− c̃v1β2
u4ỹ

2

x̃ − x̃ỹc̃v2β2(1− ỹ
(u1+x̃)2 ) > 0.

Equation using the Routh-Hurwitz criterion (36), it has been noted that Ẽ12 is locally asymp-
totically stable provided that Q11, Q12 and Q13 are positive and Q11Q12 > Q13 i.e.,
(α1+β1x̃+β2ỹ+ỹ(u3+ u4

x̃ ))(x̃2(1− ỹ
(u1+x̃)2 )2−ỹc̃v2β2+x̃(1− ỹ

(u1+x̃)2 )(α1+β1x̃+β2ỹ−ỹ(u3+

u4

x̃ ))+ỹ(α1+β1x̃+β2ỹ)(u3+u4

x̃ ))+ u4ỹ
2

x̃(u1+x̃) (x̃(1− ỹ
(u1+x̃)2 )+ỹ(u3+u4

x̃ ))−x̃c̃v1β1(x̃(1− ỹ
(u1+x̃)2 )+

α1 + β1x̃+ β2ỹ) + 2x̃ỹ(1− ỹ
(u1+x̃)2 )(α1 + β1x̃+ β2ỹ)(u3 + u4

x̃ ) + c̃v1β2
u4ỹ

2

x̃ − ỹc̃v2β1
x̃

u1+x̃ > 0.

• The equilibrium point’s characteristic equation, Ē13, is stated as follows:

λ4 + λ3U1 + λ2U2 + λU3 + U4 = 0 (37)

where,
U1 = m1 +m4 +m7 +m8,
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3 ANALYSIS OF MODEL 1 9

U2 = m1m8 + (m1 +m8)(m4 +m7) +m2m3 +m5m6 +m4m7 − c̄(x̄v1β1 + ȳv2β2 + z̄v3β3),

U3 = (m1 +m8)(m5m6 +m4m7) + (m4 +m7)(m1m8 − x̄c̄v1β1)− (m1 +m7)ȳc̄v2β2 − (m1 +
m4)z̄c̄v3β3 + ȳc̄m2v2β1 − x̄c̄v1m3β2 + z̄c̄m5v3β2 − ȳc̄v2m6β3,

U4 = (m1m4 +m2m3)(m7m8− z̄c̄v3β3)− c̄(m7β2 +m6β3)(x̄v1m3 + ȳm1v2)+m1m5(z̄c̄v3β2 +
m6m8) + c̄m2β1(ȳv2m7 −m5m7)− x̄c̄v1β1(m5m6 +m4m7)

and
m1 = x̄(1 − ȳ

(u1+x̄)2 ),m2 = x̄
x̄+u1

,m3 = u4ȳ
2

x̄2 ,m4 = ȳ(u3 + u4

x̄ −
z̄

(u5+ȳ)2 ),m5 = ȳ
ȳ+u5

,m6 =
u8z̄

2

ȳ2 ,m7 = z̄(u7 + u8

ȳ ),m8 = α1 + β1x̄+ β2ȳ + β3z̄.

The Routh-Hurwitz criterion states that if certain conditions are met, then Ē13 is locally
asymptotically stable:

U1, U2, U3 and U4 and U1U2U3 > U2
3 + U2

1U4 are positive.

3.3.1. Global Stability

The coexisting equilibrium point Ē13 global stability will be demonstrated in this section. Using
the appropriate Lyapunov function, we demonstrate the global stability result. All paths finally
approach the equilibrium point starting from any location within the positive octant because of
the coexisting equilibrium’s global stability.
Theorem 4.1:
If the area has any of the following disparities in Ω1,

ȳ < σ11 (38)
WL

σ13
< (u3 +

u4x̄

σ12
) (39)

6[
u1 + x̄

σ11
− u4ȳ

σ12
]2 < (1− ȳ

σ11
)(u3 +

u4x̄

σ12
− WL

σ13
) (40)

6[v1 + β1WL]2 < (1− ȳ

σ11
)(α1 + β1x̄+ β2ȳ + β3z̄) (41)

6[
1

σ13
(ȳ + u5)− u8

σ14
]2 < (u3 +

u4x̄

σ12
− WL

σ13
)(u7 +

u8ȳ

σ14
) (42)

9[v2 + β2WL]2 < (u3 +
u4x̄

σ12
− WL

σ13
)(α1 + β1x̄+ β2ȳ + β3z̄) (43)

6(v3 + β3WL)2 < (u7 +
u8ȳ

σ14
)(α1 + β1x̄+ β2ȳ + β3z̄) (44)

where, σ11 = (u1 + x̄)(u1 + 1), σ12 = x̄, σ13 = (u5 + ȳ)(u5 + yM ) and σ14 = yM ȳ, then all the
solutions starting in the interior of the positive region have a global asymptotic stability with
regard to the positive equilibrium Ē13 in Ω1.
Proof: The following positive definite function is taken into consideration Ē13:

V11 = (x− x̄− x̄ln(
x

x̄
)) + (y − ȳ − ȳln(

y

ȳ
)) + (z − z̄ − z̄ln(

z

z̄
)) +

1

2
(c− c̄)2

Differentiate V11 with respect to time t, we get

dV11

dt
= (

x− x̄
x

)
dx

dt
+ (

y − ȳ
y

)
dy

dt
+ (

z − z̄
z

)
dz

dt
+ (c− c̄)dc

dt

Using the (2)-(5) system of equations, we obtain the result after performing several algebraic
operations

dV11

dt
= −(x− x̄)2(1− ȳ

σ11
)− (y − ȳ)2(u3 +

u4x̄

σ12
− z

σ13
)

−(z − z̄)2(u7 +
u8x̄

σ14
)− (c− c̄)2(α1 + β1x̄+ β2ȳ + β3z̄)
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4 ANALYSIS OF MODEL 2 10

−(x− x̄)(y − ȳ)(
u1 + x̄

σ11
− u4ȳ

σ12
)− (x− x̄)(c− c̄)(v1 + β1c)

−(y − ȳ)(z − z̄)( 1

σ13
(ȳ + u5)− u8

σ14
)

−(y − ȳ)(c− c̄)(v2 + β2c)− (z − z̄)(c− c̄)(v3 + β3c)

Where, σ11 = (u1 + x̄)(u1 + x), σ12 = xx̄, σ13 = (u5 + ȳ)(u5 + y) and σ14 = yȳ.
Now dV11

dt additionally be expressed as the sum of the quadratic forms as

dV11

dt
≤ −[(

a11

2
(x− x̄)2 + a12(x− x̄)(y − ȳ) +

a22

2
(y − ȳ)2)

+(
a11

2
(x− x̄)2 + a14(x− x̄)(c− c̄) +

a44

2
(c− c̄)2)

+(
a22

2
(y − ȳ)2 + a23(y − ȳ)(z − z̄) +

a33

2
(z − z̄)2)

+(
a22

2
(y − ȳ)2 + a24(y − ȳ)(c− c̄) +

a44

2
(c− c̄)2)

+(
a33

2
(z − z̄)2 + a34(z − z̄)(c− c̄) +

a44

2
(c− c̄)2)]

where,
a11 = (1− ȳ

σ11
)/2, a12 = u1+x̄

σ11
− u4ȳ
σ12

, a14 = v1+β1c, a22 = (u3+ u4x̄
σ12
− z
σ13

)/3, a23 = 1
σ13

(ȳ+u5)− u8

σ14
,

a24 = v2 + β2c, a33 = (u7 + u8ȳ
σ14

)/2, a34 = v3 + β3c, a44 = (α1 + β1x̄+ β2ȳ + β3z̄)/3.
Using Sylvester’s criteria, we now obtain dV11

dt is unambiguously negative under the following cir-
cumstances:

a11 > 0 (45)
a22 > 0 (46)

a11a22 > a2
12 (47)

a11a44 > a2
14 (48)

a22a33 > a2
23 (49)

a22a44 > a2
24 (50)

a33a44 > a2
34 (51)

We note that the inequalities, (38) ⇒ (45), (39) ⇒ (46), (40) ⇒ (47), (41) ⇒ (48), (42) ⇒ (49),
(43)⇒ (50) and (44)⇒ (51).
Hence V11 is a Lyapunov demonstrates the theorem with respect to Ē13, this domain encompasses
the zone of attraction Ω1.

4. Analysis of Model 2

4.1. Boundedness of the Model 2

In this part, the boundaries of the relevant dependent variables are needed to examine Model
2. Thus, the following lemma contains the region that the Model 2 finds appealing.
Lemma: The set

Ω2 = {(x, y, z, c) ∈ R4
+ : 0 ≤ x(t) ≤ 1, 0 ≤ y(t) ≤ ym, 0 ≤ z(t) ≤ zm,

0 ≤ c(t) ≤ cm, x(t) + y(t) + z(t) + c(t) ≥Wl}

where φ2 = max{1 + u2

u4
+ q0v1

α1
, u2 + q0v2

α1
+ u2u6

u4u8
, u2u6

u4
+ q0v3

α1
, α1 + β1 + u2β2

u4
+ u2u6β3

u4u8
}, is a region

that solutions that start in the interior of the positive zone are drawn to.
Proof: For the interior of the positive region, let us do the following steps:
Equation (6) we obtain, dx/dt ≤ x(1− x) next, using the standard comparison theorem, we obtain
as t→∞,

x ≤ 1
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4 ANALYSIS OF MODEL 2 11

Next, let’s look at the equation (7), we obtain

dy

dt
≤ y(u2 − u4y)

next, using the standard comparison theorem, we obtain as t→∞,

y ≤ u2

u4
= ym.

Now, again let us consider from (8), we get

dz

dt
≤ z(u6 −

u8

y
z)

next, using the standard comparison theorem, we obtain as t→∞,

z ≤ u2u6

u4u8
= zm.

Next, let’s look at the equation (9), we get

dc

dt
+ α1 ≤ q0

next, using the standard comparison theorem, we obtain as t→∞,

c ≤ q0

α1
= cm.

Next, let’s look at the function:

W2(t) = x(t) + y(t) + z(t) + c(t)

by using (6) to (9), we get
dW2

dt
+ φ2W2 ≥ q0

where φ2 = max{1 + u2

u4
+ q0v1

α1
, u2 + q0v2

α1
+ u2u6

u4u8
, u2u6

u4
+ q0v3

α1
, α1 + β1 + u2β2

u4
+ u2u6β3

u4u8
} next, using

the standard comparison theorem, we obtain as t→∞,

W2 ≥
q0

φ2
= Wl

Hence, the answer to the Model 2 is bounded in Ω2.

4.2. Equilibria of Model 2

The Model 2 has the four non-negative equilibrium conditions listed below in the x, y, z, and
c spaces: ˆ̂

E20(0, 0, 0, ˆ̂c), ¨̈E21(¨̈x, 0, 0, ¨̈c), ˜̃E22(˜̃x, ˜̃y, 0, ˜̃c) and ¯̄E23(¯̄x, ¯̄y, ¯̄z, ¯̄c). It is clear that E20 exists.
We establish the validity of ¨̈E21,

˜̃E22 and ¯̄E23 as follows:

• The Existence at ˆ̂
E20(0, 0, 0, ˆ̂c),

from (9),
ˆ̂c =

q0

α1
(52)

• The Existence at ¨̈E21(¨̈x, 0, 0, ¨̈c),
from (6),

¨̈x = 1− v1
¨̈c (53)

¨̈x > 0 if 1 > v1
¨̈c,

from (9) we get
β1v1

¨̈c
2 − (α1 + β1)¨̈c+ q0 = 0 (54)
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4 ANALYSIS OF MODEL 2 12

then the positive root of (54) is

¨̈c =
(α1 + β1) +

√
(α1 + β1)2 − 4q0β1v1

2β1v1
> 0

¨̈c > 0 if (α1 + β1)2 > 4q0β1v1, and α1 < q0v1.

• The Existence at ˜̃E22(˜̃x, ˜̃y, 0, ˜̃c),
from (6) and (7),

y =
x(x+ u1)[v1u2 − v2(1− x)]

v1u4(x+ u1)− xv2
= h1(x) (55)

from (6),

c =
u4(1− x)(x+ u1)− xu2

v1u4(x+ u1)− xv2
= h2(x) (56)

Now, let us consider a function,

H(x) = q0 − α1h2(x)− (β1x+ β2h1(x))h2(x) (57)

Then we note that
H(0) = 1

v1
(q0v1 − α1) > 0 if q0v1 > α1 and

H(k0) = q0 − α1h2(k0)− (β1k0 + β2h1(k0))h2(k0) < 0.
This ensures that there is a root of this H(x) = 0 for 0 < x < k0, say ˜̃x. Additionally, this
root will be distinct if

H ′(x) = −(α1 + β1x+ β2h1(x))h′2(x)− (β1 + β2h
′
1(x))h2(x) < 0

Recognizing the value of ˜̃x, the principle values of y and c can be calculated using formulae
(55) to (56) respectively.

• Existence of ¯̄E23(¯̄x, ¯̄y, ¯̄z, ¯̄c),
from (6),

y = (1− x− v1c)(x+ u1) = t1(x, c) (58)

from (8),

z =
1

u8
t1(x, c)(u6 − v3c) = t2(x, c) (59)

Consider the function from (7) and (8),

T1(x, c) = xt1 − xu8t2 −
v3t1
v2

(xu2 − u4t1 −
xt2

t1 + u5
) (60)

and from (7) and (9),

T2(x, c) = q0 − α1c− xt2 − t1u4(t1 + u5) + x(u2 − v2c)(t1 + u5)

−(β1x+ β2t1(x, c) + β3t2(x, c))c (61)

Then we note that

T1(0, 0) =
u2

1v3u4

v2
> 0

T2(0, 0) = q0 − u1u4(u1 + u5) > 0

if q0 > u1u4(u1 + u5).
Also,
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4 ANALYSIS OF MODEL 2 13

Fig.5.1

T1(0, c) = 0 then c = 1/v1 (ψ11 say),

T1(x, 0) = 0 then x a single positive root (ψ12 suppose), derived from the quadratic equation
of x,

x2 − x(1− u1)− u1 = 0

then x =
(1−u1)+

√
1+2u1+u2

1

2 ,

T2(0, c) = 0 then c a single positive root (ψ13 suppose), derived from the cubic equation of c,

F11c
3 + F12c

2 + F13c− F14 = 0

where
F11 = v1u1v3β3/u8,
F12 = v1u1(v1u1u5 − β2)− (v1u6 + v3)u1β3/u8,
F13 = α1 + u1β2 − v1u1u5(2u1 + u4),
F14 = q0 − u1u5(u1 + u5).
Here, F11 > 0, F12 > 0, F13 > 0 and F14 > 0.
T2(x, 0) = 0 then x a single positive root (ψ14 suppose), derived from the fourth degree
equation of x,

F15x
4 + F16x

3 + F17x
2 − F18x+ F19 = 0

where
F15 = u4,
F16 = u2 + (u1 − 1)(1 + u4)− u6/u8,
F17 = (u1 − 1) + u4(u5 − 1) + u1u4(4− u1),
F18 = u4(1− u1)(2u1 + u5)− u5(u1 + u2).
F19 = u1u5(u1 + u4).
Here, F15 > 0, F16 > 0, F17 > 0, F18 > 0 and F19 > 0.
Consequently, two isoclines cross each other in the area

M2 = {(x, y) : 0 < x < ψ14, 0 < y < ψ11}

in the given two cases: (see Fig.5.1)

Case(i) : ψ11 > ψ13, ψ14 > ψ12 (62)

Case(ii) : ψ11 < ψ13, ψ14 < ψ12 (63)

This junction will result in x̄, ȳ. For distinctiveness of (x̄, ȳ), must have dy
dx < 0 for both of

the region’s curves of M2.
For curve (29),
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4 ANALYSIS OF MODEL 2 14

dy

dx
=

Φ32 − (v1c+ z) + Φ31

v1
(1− y

(u1+x)2 )

Φ34 + 1− (u6 − u7z − v3c)− Φ33 − Φ31

v1(u1+x)

< 0 (64)

and for curve (30),
dy

dx
=

Φ35

v1
(1− y

(u1+x)2 )− β1c

β2c− (u6 − u7z − v3c)− Φ35

v1(u1+x)

< 0 (65)

where,
Φ31 = v1(u1 + x) + (v2x+ v3y)− (x+ u7y + u8) q0

c2β3
,

Φ32 = (y + u5)(u2 − u3y − v2c) + (1− u1 − 2x),
Φ33 = x(u2 − u3y)− (u4y + v2cx),
Φ34 = (y + u5)(u4 + xu3),
Φ35 = (α1 + xβ1 + y(β2 + v3) + zβ3)− (cβ3 + u7y + u8) q0

c2β3
.

In case (i), the exact value of dydx given by (33) has a lower absolute value than dy
dx given by

(34). For the case (ii), The situation is the exact opposite.
Having knowledge of x̄, ȳ; z̄ and c̄ is calculable from the equations (25)-(26).

4.3. Stability of Equilibria of Model 2

The eigenvalues of the Jacobian matrix surrounding each equilibrium are calculated in order
to ascertain the local stability of each equilibrium in Model 2.

According to Model 2, the general variational matrix is

J2 =


o11 − x

x+u1
0 −xv1

u4y
2

x2 o22 − y
y+u5

−yv2

0 u8z
2

y2 −z(u8

y ) + j33 −zv3

−β1c −β2c −β3c −(α1 + β1x+ β2y + β3z)


where, o11 = −x(1 − y

(u1+x)2 ) + j11, o22 = −y(u4

x −
z

(u5+y)2 ) + j22, j11 = 1 − x − y
u1+x − v1c,

j22 = u2 − u4y
x −

z
u5+y − v2c, j33 = u6 − u8z

y − v3c.

In light of this, the examination of linear stability regarding the equilibrium points E20,
¨̈E21,

˜̃E22

and ¯̄E23 produces the following outcomes:

• For the equilibrium point ¨̈E21, two eigenvalues of the characteristic equation are u2− v2
¨̈c

and u6 − v3
¨̈c and the other two eigenvalues are given by the roots of the following equation:

λ2 + λP1 + P2 = 0 (66)

where,
P1 = α1 + (1− v1

¨̈x)(1 + β1) > 0 and P2 = (1− v1
¨̈x)(α1 + β1 − 2β1v1

¨̈c) > 0.
Equation (66)’s criterion is used to make the observed and providing that P1 and P2 are
positive, ¨̈E21 is locally stable, i.e., (α1 + β1

¨̈x) > β1v1
¨̈c and ¨̈c > u2

v2
, ¨̈c > u6

v3
and 2α < βK1.

Remark 2: Same as given in Remark 1.

• At the point ˜̃E22, the characteristic equation’s one eigenvalue is u6 − v3
˜̃c i.e.,

˜̃c >
u6

v3

and the roots of the following equation provide the values for the remaining three eigenvalues.

λ3 + λ2S1 + λS2 + S3 = 0 (67)

where,
S1 = α1 + β1

˜̃x+ β2
˜̃y + ˜̃x(1− ˜̃y

(u1+˜̃x)2
) + u4

˜̃y
˜̃x
> 0,
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4 ANALYSIS OF MODEL 2 15

S2 = u4
˜̃y
2

˜̃x(u1+˜̃x)
+u4

˜̃y(1− ˜̃y

(u1+˜̃x)2
)+(α1+β1

˜̃x+β2
˜̃y)(˜̃x(1− ˜̃y

(u1+˜̃x)2
)+ u4

˜̃y
˜̃x

)− ˜̃x˜̃cv1β1− ˜̃y˜̃cv2β2 > 0,

S3 = ( u4
˜̃y
2

˜̃x(u1+˜̃x)
+ u4

˜̃y(1− ˜̃y

(u1+˜̃x)2
))(α1 + β1

˜̃x+ β2
˜̃y) + ˜̃y˜̃cv2β1

˜̃x
u1+˜̃x

− ˜̃y˜̃cv1β1u4 − ˜̃cv1β2
u4

˜̃y
2

˜̃x
−

˜̃x˜̃y˜̃cv2β2(1− ˜̃y

(u1+˜̃x)2
) > 0.

Equation using the Routh-Hurwitz criterion (67), it has been noted that ˜̃E22 is locally asymp-
totically stable provided that S1, S2 and S3 are positive and S1S2 > S3 that is,
(α1+β1

˜̃x+β2
˜̃y)2(˜̃x(1− ˜̃y

(u1+˜̃x)2
)+ u4

˜̃y
˜̃x

)−˜̃x˜̃cv1β1(α1+β1
˜̃x+β2

˜̃y) (˜̃x(1− ˜̃y

(u1+˜̃x)2
)+ u4

˜̃y
˜̃x

)( u4
˜̃y
2

˜̃x(u1+˜̃x)
+

u4
˜̃y(1− ˜̃y

(u1+˜̃x)2
) + (α1 + β1

˜̃x+ β2
˜̃y)(˜̃x(1− ˜̃y

(u1+˜̃x)2
) + u4

˜̃y
˜̃x

)− ˜̃x˜̃cv1β1 − ˜̃y˜̃cv2β2) + ˜̃cv1β2
u4

˜̃y
2

˜̃x
+

˜̃y˜̃cv1β1u4 − ˜̃y˜̃cv2β1
˜̃x

u1+˜̃x
> 0.

• For the equilibrium point’s defining equation ¯̄E23, is shown as:

λ4 + λ3N1 + λ2N2 + λN3 +N4 = 0 (68)

where,
N1 = n1 + n4 + n7 + n8

N2 = n1n8 + (n1 + n8)(n4 + n7) + n2n3 + n5n6 + n4n7 − ¯̄x¯̄cv1β1 − ¯̄y¯̄cv2β2 − ¯̄z¯̄cv3β3

N3 = (n1 +n8)(n5n6 +n4n7)+(n4 +n7)(n1n8− ¯̄x¯̄cv1β1)−(n1 +n7)¯̄y¯̄cv2β2−(n1 +n4)¯̄z¯̄cv3β3 +
¯̄y¯̄cv2n2β1 − ¯̄x¯̄cv1n3β2 + ¯̄z¯̄cv3n5β2 − ¯̄y¯̄cv2n6β3

N4 = (n1n4 +n2n3)(n7n8− ¯̄z¯̄cv3β3)−¯̄c(n7β2 +n6β3)(¯̄xv1n3 +¯̄yn1v2)+n1n5(¯̄z¯̄cv3β2 +n6n8)+
¯̄cn2β1(¯̄yv2n7 − n5n7)− ¯̄x¯̄cv1β1(n5n6 + n4n7)
and
n1 = ¯̄x(1− ¯̄y

(u1+¯̄x)2 ), n2 = ¯̄x
¯̄x+u1

, n3 = u4 ¯̄y2

¯̄x2 , n4 = y(u4
¯̄x −

¯̄z
(u5+¯̄y)2 ), n5 =

¯̄y
¯̄y+u5

, n6 = u8¯̄z2

¯̄y2
, n7 =

¯̄zu8
¯̄y , n8 = α1 + β1 ¯̄x+ β2¯̄y + β3¯̄z.

Using Routh - Hurwitz condition, ¯̄E23 is locally asymptotically stable provided thatN1, N2, N3

and N4 and N1N2N3 > N2
3 +N2

1N4 are positive.

4.3.1. Global Stability

The point ¯̄E23’s global stability will be demonstrated in this section. With the aid of the proper
Lyapunov function, we demonstrate the consequence of global stability. The global stability of the
point ¯̄E23 guarantees that all the trajectories, starting from any point within the positive octant,
finally approach the equilibrium point.
Theorem 5.1:
If any of the following disparities exist in the area Ω2,

ȳ < σ21 (69)
zσ22 < u4x̄σ23 (70)

6[
u1 + x̄

σ21
− u4ȳ

σ22
]2 < (1− ȳ

σ21
)(
u4x̄

σ22
− Wl

σ23
) (71)

6[v1 + β1Wl]
2 < (1− ȳ

σ21
)(α1 + β1x̄+ β2ȳ + β3z̄) (72)

6[
1

σ23
(ȳ + u5)− u8

σ24
]2 <

u8ȳ

σ24
(
u4x̄

σ22
− Wl

σ23
) (73)

9[v2 + β2Wl]
2 < (

u4x̄

σ22
− Wl

σ23
)(α1 + β1x̄+ β2ȳ + β3z̄) (74)

6σ24(v3 + β3Wl)
2 < u8ȳ(α1 + β1x̄+ β2ȳ + β3z̄) (75)

where, σ21 = (u1 + x̄)(u1 + 1), σ22 = x̄, σ23 = (u5 + ȳ)(u5 + ym) and σ24 = ȳWl, therefore the
solutions starting in Ω2 have a global asymptotic stability with respect to ¯̄E23.
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5 ANALYSIS OF SUBMODELS OF MODEL 2 16

Proof: We take into account the following non negative definite function regarding ¯̄E23:

V21 = (x− x̄− x̄ln(
x

x̄
)) + (y − ȳ − ȳln(

y

ȳ
)) + (z − z̄ − z̄ln(

z

z̄
)) +

1

2
(c− c̄)2

When we differentiating V21 in relation to time t, we get

dV21

dt
= (

x− x̄
x

)
dx

dt
+ (

y − ȳ
y

)
dy

dt
+ (

z − z̄
z

)
dz

dt
+ (c− c̄)dc

dt

Equations (6)-(9), we pursue certain algebraic operations

dV21

dt
= −(x− x̄)2(1− ȳ

σ21
)− (y − ȳ)2(

u4x̄

σ22
− z

σ23
)

−(z − z)2(
u8x̄

σ24
)− (c− c̄)2(α1 + β1x̄+ β2ȳ + β3z̄)

−(x− x̄)(y − ȳ)(
u1 + x̄

σ21
− u4ȳ

σ22
)− (x− x̄)(c− c̄)(v1 + β1c)

−(y − ȳ)(z − z̄)( 1

σ23
(ȳ + u5)− u8

σ24
)

−(y − ȳ)(c− c̄)(v2 + β2c)− (z − z̄)(c− c̄)(v3 + β3c)

Where, σ21 = (u1 + x̄)(u1 + x), σ22 = xx̄, σ23 = (u5 + ȳ)(u5 + y) and σ24 = yȳ.
Now dV21

dt additionally be expressed as the sum of the quadratic forms as

dV21

dt
≤ −[(

e11

2
(x− x̄)2 + e12(x− x̄)(y − ȳ) +

e22

2
(y − ȳ)2)

+(
e11

2
(x− x̄)2 + e14(x− x̄)(c− c̄) +

e44

2
(c− c̄)2)

+(
e22

2
(y − ȳ)2 + e23(y − ȳ)(z − z̄) +

e33

2
(z − z̄)2)

+(
e22

2
(y − ȳ)2 + e24(y − ȳ)(c− c̄) +

e44

2
(c− c̄)2)

+(
e33

2
(z − z̄)2 + e34(z − z̄)(c− c̄) +

e44

2
(c− c̄)2)]

where,
e11 = (1− ȳ

σ21
)/2, e12 = u1+x̄

σ21
− u4ȳ

σ22
, e14 = v1 + β1c, e22 = (u4x̄

σ22
− z

σ23
)/3, e23 = 1

σ23
(ȳ+ u5)− u8

σ24
,

e24 = v2 + β2c, e33 = (u8ȳ
σ24

)/2, e34 = v3 + β3c, e44 = (α1 + β1x̄+ β2ȳ + β3z̄)/3.
Now, by using Sylvesters criteria, we get dV21

dt is negative definite under the following conditions:

e11 > 0 (76)
e22 > 0 (77)

e11e22 > e2
12 (78)

e11e44 > e2
14 (79)

e22e33 > e2
23 (80)

e22e44 > e2
24 (81)

e33e44 > e2
34 (82)

We note that the inequalities, (69) ⇒ (76), (70) ⇒ (77), (71) ⇒ (78), (72) ⇒ (79), (73) ⇒ (80),
(74)⇒ (81) and (75)⇒ (82).
Hence V21 is a Lyapunov function with respect to ¯̄E23, whose realm includes the attraction’s region
Ω2, the theorem being proved.

5. Analysis of Submodels of Model 2

5.1. Equilibria of Submodel 1 of Model 2
As considered the Submodel 1 of the main Model 2the following three neutral equilibrium

states in x, y and c space specifically, E∗31(0, 0, c∗), Ě32(x̌, 0, č), and Ĕ33(x̆, y̆, c̆). We establish the
validity of E∗31, Ě32 and Ĕ33 as follows:
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5 ANALYSIS OF SUBMODELS OF MODEL 2 17

• The existence at E∗31 = (0, 0, c∗)
from (12),

c∗ =
q0

α1
(83)

• The existence at Ě32(x̌, 0, č),
from (10),

x̌ = 1− v1č (84)

from (12) and (84),

č =
(α1 + β1)±

√
(α1 + β1)2 − 4q0v1β1

2v1β1
(85)

• The existence at Ĕ33(x̆, y̆, c̆),
from (10) and (11),

y̆ =
x̆(u1 + x̆)(v2(1− x̆)− v1u2)

x̆v2 − v1u4(u1 + x̆)
= h1(x) (86)

from (11),

c̆ =
1

v2
(u2 −

u4

x̆
h1(x)) = h2(x) (87)

from (12), the polynomial of gets a positive root that we can use. x,

A1x̆
6 +A2x̆

5 +A3x̆
4 +A4x̆

3 +A5x̆
2 +A6x̆−A7 = 0 (88)

where the values of A1 to A7 involve equilibrium and model parameters.

5.2. Stability of Equilibria of Submodel 1 of Model 2

By calculating the eigenvalues of the variational matrix about each equilibrium, the local sta-
bility of equilibrium of submodel 1 of Model 2 is ascertained.

Corresponds to the general variational matrix of submodel 1 of Model 2 is

J3 =

 k11 − x
x+u1

−xv1

u4y
2

x2
−u4y
x + k22 −yv2

−β1c −β2c −(α1 + β1x+ β2y)


where, k11 = −x(1− y

(u1+x)2 ) +m11, k22 = u2 − u4y
x − v2c, m11 = 1− x− y

u1+x − v1c.
In light of this, the examination of linear stability regarding E∗31, Ě32 and Ĕ33 give the results
below:

• For the point E∗31, characteristic equation’s eigenvalues are 1 − v1c
∗, u2 − v2c

∗ and −α1,
which shows E∗31 is locally asymptotically stable if α1 < q0v1 and α1u2 < q0v2 holds good.

• For the point Ě32, characteristic equation for Ě32 is given by

λ3 +B1λ
2 +B2λ+B3 = 0 (89)

where,
B1 = (α1 + β1x̌) + x̌− (u2 − v2č),
B2 = (α1 + β1x̌)(x̌− u2) + čv2(x̌+ v1) + x̌čβ1(v2 − v1)− x̌u2,
B3 = x̌(u2 − v2č)(čv1β1 − (α1 + β1x̌)).
According Routh-Hurwitz rule Ě32 is locally asymptotically stable if B1 > 0, B2 > 0, B3 > 0
and B1B2 > B3 that is,
(x̌− u2)(α1 + β1x̌+ čv2 − u2) + x̌čβ1(v2 − v1) + čv2((α1 + β1x̌)− u2) > 0.
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• For the point Ĕ33, The characteristic equation for Ĕ33 is given by

λ3 +O1λ
2 +O2λ+O3 = 0 (90)

where,
O1 = x(1− y̆

(u1+x̆)2 ) + u4y̆
x̆ + (α1 + β2(x̆+ y̆)),

O2 = y̆u4(1− y̆
(u1+x̆)2 ) + (α1 + β2(x̆+ y̆))(x̆(1− y̆

(u1+x̆)2 ) + u4y̆
x̆ ) + u4y̆

2

x̆(u1+x̆) − cy̆v2β2− c̆x̆v1β1,

O3 = x̆(1− y̆
(u1+x̆)2 )(u4y̆

x̆ (α1 + β2(x̆+ y̆))− β2c̆y̆v2) + u4y̆
2

x̆2 ( x̆
u1+x̆ (α1 + β2(x̆+ y̆))− β2c̆x̆v1) +

c̆β1( x̆y̆v2u1+x̆ − y̆v1u4).
By the Routh-Hurwitz rule Ĕ33 is locally asymptotically stable if O1 > 0, O2 > 0, O3 > 0
and O1O2 > O3 that is,
x̆2(1− y̆

(u1+x̆)2 )2(u4y̆
x̆ +(α1 +β2(x̆+ y̆)))+ x̆(1− y̆

(u1+x̆)2 )( u4y̆
2

x̆(u1+x̆)− c̆x̆v1β1)−(u4y̆
2

x̆2 ( x̆
u1+x̆ (α1 +

β2(x̆+ y̆))− β2c̆x̆v1) + c̆β1( x̆y̆v2u1+x̆ − y̆v1u4)) > 0.

We may now attempt to determine the circumstances in which the system experiences Hopf-
bifurcation. Due to its critical significance in the Holling type II functional response, which ex-
plains the predation of intermediate consumers, we chose the parameter u4 as the bifurcation
parameter for this reason. Now apply the Lius rule, [23] to determine the prerequisites for the
Hopf-bifurcation-based small amplitude periodic solution.
As the equilibrium population densities are functions of u4, the coefficients of the characteristic
equation (90) are functions of the parameter u4 and hence we can use the notation Oi = Oi(u4)
for i = 1, 2, 3. Noting that the quantities Ois are smooth functions of the parameter u4, we first
state in our case, the definition of a simple Hopf-Bifurcation.
If a critical value u∗4 of parameter u4 be found such that (i) a simple pair of complex conju-
gate eigenvalues of characteristic equation exists, say, λ1(u4) = u(u4) + iv(u4), λ2(u4) = u(u4) −
iv(u4) = λ1(u4). These eigen values will become purely imaginary at u4 = u∗4, i.e., λ1(u∗4) = iv0,
λ2(u∗4) = −iv0, with v(u∗4) = v0 > 0, and the other eigenvalue remains real and negative; and
(ii) the transversality condition, dReλi(u∗4)/du4 |u4=u∗

4
= du(u4)/du4 |u4=u∗

4
6= 0 is satisfied. Then

we find at u4 = u∗4, a simple Hopf-bifurcation. Without knowing eigenvalues, [23] proved that
(referring the result to the current case): if O1(u4), O3(u4),∆(u4) = O1(u4)O2(u4) − O3(u4) are
smooth functions of the parameter ‘u4’ in an open interval containing u∗4ε<+ such that following
conditions hold:
(i∗) O1(u∗4) > 0, ∆(u∗4) = 0, O3(u∗4) > 0;
(ii∗) d∆(u4)/du4 |u4=u∗

4
6= 0

then (i∗) and (ii∗) are equivalent to conditions (i) and (ii) for the occurrence of a simple Hopf-
bifurcation at u4 = u∗4. Hence we can propose the following theorem:
Theorem 3.1 If a critical value u∗4 of parameter u4 be found such that O1(u∗4) > 0, O3(u∗4) > 0
and ∆(u∗4) = 0 and further ∆′ 6= 0 (where prime denotes differentiation with respect to u4) then
system (10)-(12) undergoes Hopf-bifurcation around E33.

5.3. Equilibria of Submodel 2 of Model 2

Now let us take Submodel 2 of Model 2, it has three non-negative equilibria following in y, z
and c space namely, E∗∗41 (0, 0, c∗∗), ˇ̌E42(ˇ̌y, 0, ˇ̌c), and ˘̆

E43(˘̆y, ˘̆z, ˘̆c). We prove the existence of E∗∗41 ,
ˇ̌E42 and ˘̆

E43 as follows:

• The existence at E∗∗41 = (0, 0, c∗∗)
from (5),

c∗∗ =
q0

α1
(91)

• The existence at ˇ̌E42(ˇ̌y, 0, ˇ̌c),
From (13),

ˇ̌y =
¯̄x

u4
(u2 − v2ˇ̌c) (92)
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5 ANALYSIS OF SUBMODELS OF MODEL 2 19

ˇ̌y > 0 if u2 > v2ˇ̌c.
From (15) and (92) we get,

Q1ˇ̌c
2 −Q2ˇ̌c+ q0 = 0 (93)

where, Q1 =
¯̄xv2β2

u4
, Q2 = α1 + ¯̄xβ1 +

¯̄xu2β2

u4
.

We get a positive root,

ˇ̌c =
Q2 ±

√
Q2

2 − 4Q1q0

2Q1
(94)

• The existence at ˘̆
E43(˘̆y, ˘̆z, ˘̆c),

from (13) and (14),

˘̆z =
v3(u2 −

˘̆yu4
¯̄x )− v2u6

( v3
˘̆y+u5

− v2u8
˘̆y

)
= w1(y) (95)

from (14),
˘̆c =

1

v3(u6 − u8
˘̆y
w1(y))

= w2(y) (96)

using (95) and (96) in (15) we get a positive root from the polynomial of ˘̆y,

L1
˘̆y

5
+ L2

˘̆y
4

+ L3
˘̆y

3
+ L4

˘̆y
2

+ L5
˘̆y − L6 = 0 (97)

where the values of L1 to L6 involve equilibrium and model parameters.

5.4. Stability of Equilibria of Submodel 2 of Model 2

Computing the eigenvalues of the variational matrix for each equilibrium allows one to ascertain
the local stability of equilibrium of Submodel 2.

Corresponding to the general variational matrix the submodel 2 of Model 2 is

J4 =

 p11 − y
y+u5

−yv2

u8z
2

y2 u6 − 2u8z
y − v3c −zv3

−β2c −β3c −(α1 + β1 ¯̄x+ β2y + β3z)


where, p11 = u2 − 2u4y

¯̄x − zu5

(u5+y)2 − v2c.

The linear stability analysis for E∗∗41 ,
ˇ̌E42 and ˘̆

E43 are given as follows:

• The point E∗∗41 , the eigenvalues of the characteristic equation are u2 − v2c
∗∗, u6 − v3c

∗∗ and
−(α1+¯̄xβ1), which shows E∗∗41 is locally asymptotically stable if α1u2 < q0v2 and α1u6 < q0v3

holds good.

• The point ˇ̌E42, one eigenvalue of the characteristic equation is u6 − v3ˇ̌c and other two eigen-
values are given by the roots of the following equation

λ2 + λ(α1 + ¯̄xβ1 +
ˇ̌yu4

¯̄x
) + ˇ̌y((α1 + ¯̄xβ1)

u4

¯̄x
− ˇ̌cv2β2) = 0 (98)

By the Routh-Hurwitzs rule it is observed that ˇ̌E42 is locally asymptotically stable if the
conditions hold well.

ˇ̌c >
u6

v3
(99)

and
ˇ̌cv2 ¯̄xβ2 < u4(α1 + ¯̄xβ1). (100)
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• The point ˘̆
E43, The characteristic equation about ˘̆

E43 is given by

λ3 + I1λ
2 + I2λ+ I3 = 0 (101)

where,
I1 = (u4

¯̄x −
˘̆z

(˘̆y+u5)2
) + (

˘̆zu8
˘̆y

)− (α1 + β1 ¯̄x+ β2
˘̆y + β3

˘̆z),

I2 = (
˘̆zu8
˘̆y

)((u4
¯̄x −

˘̆z
(˘̆y+u5)2

)− (α1 +β1 ¯̄x+β2
˘̆y+β3

˘̆z))− (u4
¯̄x −

˘̆z
(˘̆y+u5)2

)(α1 +β1 ¯̄x+β2
˘̆y+β3

˘̆z) +

˘̆c(˘̆zv3β3 + ˘̆yv2β2)− ˘̆z
2
u8

˘̆y(u5+˘̆y)
,

I3 = ˘̆z˘̆cv2u8(
˘̆zβ3

˘̆y
+ β2) + ˘̆c˘̆zv3β3(u4

¯̄x −
˘̆z

(˘̆y+u5)2
)− (u4

¯̄x −
˘̆z

(˘̆y+u5)2
)(

˘̆zu8
˘̆y

)(α1 + β1 ¯̄x+ β2
˘̆y+ β3

˘̆z)−

(
˘̆y

u5+˘̆y
)((˘̆c˘̆zv2β2) + (

˘̆z
2
u8

˘̆y
2 )(α1 + β1 ¯̄x+ β2

˘̆y + β3
˘̆z)).

By Routh–Hurwitz rule ˘̆
E43 is locally asymptotically stable if I1 > 0, I2 > 0, I3 > 0 and

I1I2 > I3 that is,
(

˘̆zu8
˘̆y

)−(α1+β1 ¯̄x+β2
˘̆y+β3

˘̆z)((
˘̆zu8
˘̆y

)((u4
¯̄x −

˘̆z
(˘̆y+u5)2

)−(α1+β1 ¯̄x+β2
˘̆y+β3

˘̆z))−(u4
¯̄x −

˘̆z
(˘̆y+u5)2

)(α1+

β1 ¯̄x+β2
˘̆y+β3

˘̆z)+(˘̆c˘̆zv3β3)+(˘̆y˘̆cv2β2)− ˘̆z
2
u8

˘̆y(u5+˘̆y)
)+(u4

¯̄x −
˘̆z

(˘̆y+u5)2
)2((

˘̆zu8
˘̆y

)− (α1 +β1 ¯̄x+β2
˘̆y+

β3
˘̆z))+(u4

¯̄x −
˘̆z

(˘̆y+u5)2
)((˘̆y˘̆cv2β2)− ˘̆z

2
u8

˘̆y(u5+˘̆y)
)− ˘̆z˘̆cv2u8(

˘̆zβ3

˘̆y
+β2)+(

˘̆y

u5+˘̆y
)((˘̆c˘̆zv2β2)+(

˘̆z
2
u8

˘̆y
2 )(α1 +

β1 ¯̄x+ β2
˘̆y + β3

˘̆z)) > 0.

Now, let us make an attempt to observe the conditions under which the system undergoes
Hopf-bifurcation. For this purpose, we select the parameter u4 as bifurcation parameter as it plays
a important role in Holling type II functional response which tells the predation of intermediate
consumer. Now let us apply the Lius rule, [23] to get the conditions for small amplitude periodic
solution arising from Hopf-bifurcation.
As the equilibrium population densities are functions of u4, the coefficients of the characteristic
equation (101) are functions of the parameter u4 and hence we can use the notation Ii = Ii(u4)
for i = 1, 2, 3. Noting that the quantities Iis are smooth functions of the parameter u4, we first
state in our case, the definition of a simple Hopf-Bifurcation.
If a critical value u∗4 of parameter u4 be found such that (i) a simple pair of complex conju-
gate eigenvalues of characteristic equation exists, say, λ1(u4) = u(u4) + iv(u4), λ2(u4) = u(u4) −
iv(u4) = λ1(u4). These eigen values will become purely imaginary at u4 = u∗4, i.e., λ1(u∗4) = iv0,
λ2(u∗4) = −iv0, with v(u∗4) = v0 > 0, and the other eigenvalue remains real and negative; and (ii)
the transversality condition, dReλi(u∗4)/du4 |u4=u∗

4
= du(u4)/du4 |u4=u∗

4
6= 0 is satisfied. Then we

find at u4 = u∗4, a simple Hopf-bifurcation. Without knowing eigenvalues, [23] proved that (re-
ferring the result to the current case): if I1(u4), I3(u4),∆(u4) = I1(u4)I2(u4)− I3(u4) are smooth
functions of the parameter ‘u4’ in an open interval containing u∗4ε<+ such that following conditions
hold:
(i∗) I1(u∗4) > 0, ∆(u∗4) = 0, I3(u∗4) > 0;
(ii∗) d∆(u4)/du4 |u4=u∗

4
6= 0

then (i∗) and (ii∗) are equivalent to conditions (i) and (ii) for the occurrence of a simple Hopf-
bifurcation at u4 = u∗4. Hence we can propose the following theorem:
Theorem 3.1 If a critical value u∗4 of parameter u4 be found such that I1(u∗4) > 0, I3(u∗4) > 0
and ∆(u∗4) = 0 and further ∆′ 6= 0 (where prime denotes differentiation with respect to u4) then
system (13)-(15) undergoes Hopf-bifurcation around E43.

6. Numerical Simulations:

In order to make it easier to understand our mathematical results, we present in this part a
numerical simulation that shows the dynamical behaviour of a toxicant’s effect on a three-species
food-chain system when the population is negatively impacted by the toxicant. The graphs have
been plotted with the aid of MATLAB, and the figures show how all of the equilibrium points of
the models behave in terms of stability for the specified sets of parameters.
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Figure 1. A time graph for Model 1 that shows stability around the point Ë11.
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Figure 2. A time graph for Model 1 that shows stability around the point Ẽ12.
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Figure 3. A time graph for Model 1 that shows stability around the point Ē13.
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Figure 4. A time graph for Model 1 that shows stability around the point ¨̈E21.
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Figure 5. A time graph for Model 1 that shows stability around the point ˜̃E22.
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Figure 6. A time graph for Model 1 that shows stability around the point ¯̄E23.
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Figure 7. A time graph for Model 1 that shows stability around the point Ĕ33.

Table 1. Analysis experiment of Subsystem 1 of Model 2 for different values of parameter “q0",
i.e., the external input of toxicant into environment.

Fig. Parameter Equilibrium Values of
x y c

Fig.10 q0=0.3899 0.4540, 0.3562, 0.1216
q0=0.5899 0.4561, 0.3556, 0.1842
q0=0.7899 0.4573, 0.3551, 0.2464

6.1. Numerical Simulation for Model 1

We choose the following values of parameters for Ë11:

u1 = 15.82; u2 = 0.23; u3 = 0.1; u4 = 0.21; u5 = 0.00001; u6 = 0.15;
u7 = 0.4031; u8 = 0.104; v1 = 0.2001; v2 = 1; v3 = 1; q0 = 0.975;

α1 = 2.998; β1 = 0.301; β2 = 0.2012; β3 = 0.211.

It is observed that the above set of parameters, the point Ë11

ẍ = 0.9405, ÿ = 0.0000, z̈ = 0.0000, c̈ = 0.2973,

is locally asymptotically stable (see Fig.1).
We select the following set values for Ẽ12:

u3 = 0.401; u5 = 0.04; u6 = 0.14; u7 = 399.0; u8 = 5.969.

Along with the above values and selecting the remaining parameters to be the same as considered
for Ë11, it is observed that the above set of values for the point Ẽ12

x̃ = 0.9007, ỹ = 0.7043, z̃ = 0.0000, c̃ = 0.2858,

is locally asymptotically stable (see Fig.2).
We select the some values for Ē13:

u5 = 0.401; u6 = 0.64; u7 = 0.41; u8 = 0.404; v3 = 0.40001.
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Figure 8. A time graph in the plane - XY for the Submodel 1 of Model 2 for the point Ĕ33,
highlighting the bifurcation behavior.

Figure 9. A time graph for the Submodel 1 of Model 2 for the point Ĕ33, highlighting the
bifurcation behavior

Table 2. Analysis experiment of Subsystem 2 of Model 2 for different values of parameter “q0",
i.e., the external input of toxicant into environment.

Fig. Parameter Equilibrium Values of
y z c

Fig.14 q0=0.3899 2.3501, 2.0733, 0.1892
q0=0.5899 2.2561, 2.0054, 0.1423
q0=0.7899 2.1678, 1.9415, 0.0947

Along with the above values and taking the remaining parameters to be the same as taken for Ë11,
it is observed that the above set of values for the point Ē13

ẍ = 0.9010, ÿ = 0.7319, z̈ = 0.5505, c̈ = 0.2758

is locally asymptotically stable (see Fig.3).

6.2. Numerical Simulation for Model 2

We select the these values for ¨̈E21:

u1 = 15.82; u2 = 0.13; u3 = 0.1; u4 = 0.21; u5 = 0.00001;
u7 = 0.4031; u8 = 0.104; v1 = 0.2001; v2 = 1; v3 = 1;
u6 = 0.15; q0 = 0.975; α1 = 2.998; β1 = 0.301; β2 = 0.2012;β3 = 0.211.

It has been found that the above set of parameters, the point ¨̈E21

¨̈x = 0.9405, ¨̈y = 0.0000, ¨̈z = 0.0000, ¨̈c = 0.2972,

is locally asymptotically stable (see Fig.4).
We have taken the following values of parameters for ˜̃E22:

u1 = 5.82; u4 = 0.61; u5 = 12.91; u6 = 0.00001;
u8 = 0.804; v2 = 0.9872; v3 = 0.9858.

Along with the above values and taking the remaining parameters to be the same as taken for ¨̈E21,
it has been found that the above set of values, the point ˜̃E22

˜̃x = 0.8493, ˜̃y = 0.6197, ˜̃z = 0.0000, ˜̃c = 0.2884,

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 12 (Dec) - 2022

http://ymerdigital.com

Page No:1157



6 NUMERICAL SIMULATIONS: 26

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time   t

x
, 

  
 y

, 
  

 c

q
0
=3899

q
0
=5899

q
0
=7899

x

y

c

Figure 10. Contrast of x, y and c with respect to time t, corresponding to different values of q0

in Submodel 1 of Model 2.
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Figure 11. A time graph for the Submodel 2 of Model 2 for the point ˘̆
E43, displaying the stability

behavior.
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Figure 12. A time graph in the plane - XY for the Submodel 2 of Model 2 for the point ˘̆
E43,

displaying the stability behavior.

is locally asymptotically stable (see Fig.5).
We have chosen the following values of parameters for ¯̄E23:

u5 = 0.501; u6 = 0.64; u8 = 0.704; v2 = 0.001; v3 = 0.1001.

Along with the these values and taking the rest of parameters to be the same as taken for ¨̈E21, it
has been found that the above set of parameters, the point ¯̄E23

¯̄x = 0.8968, ¯̄y = 0.8147, ¯̄z = 0.7091, ¯̄c = 0.2725,

is locally asymptotically stable (see Fig.6).

6.3. Numerical Simulation for the Subsystem 1 of Model 2

Wef have chosen the these values of parameters for the first subsystem:

u1 = 0.2; u2 = 0.16; u4 = 0.11; v1 = 0.001; v2 = 0.001; q0 = 0.975;
α1 = 2.998; β1 = 0.301; β2 = 0.2012.

It has been found that the above set of parameters, the point Ĕ33(x̆, y̆, c̆)

x̆ = 0.4275, y̆ = 0.3590, c̆ = 0.3052,

is locally asymptotically stable (see Fig.7).
Now, we observe the Hopf-bifurcation of the first subsystem, considering u1 as the bifurcating
parameter. The transversality rule holds with the set of parameters when u1 = ŭ1 = 0.22. It is
very clear that the interior point Ĕ33 of first submodel is stable when u1 < ŭ1 and unstable when
u1 > ŭ1 for which, the Hopf-bifurcation occurs (see Fig.8).

6.4. Numerical Simulation for the Subsystem 2 of Model 2

We select the following parameter values for the second subsystem:

u2 = 0.73; u4 = 0.001; u5 = 0.501; u6 = 0.64; u8 = 0.704; v2 = 0.001;
v3 = 0.1001; q0 = 0.7899; α1 = 2.998; β1 = 0.301; β2 = 0.2012; β3 = 0.211.
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Figure 13. A time graph in the plane - XY for the Submodel 2 of Model 2 for the point ˘̆
E43,

displaying the bifurcation behavior.

Figure 14. A time graph for the Submodel 2 of Model 2 for the point ˘̆
E43, displaying the

bifurcation behavior.

It has been found that under the above set of parameters, the equilibrium point ˘̆
E43(˘̆y, ˘̆z, ˘̆c)

˘̆y = 0.4275, ˘̆z = 0.3590, ˘̆c = 0.3052,

is locally asymptotically stable (see Fig.9).
Now, we observe the Hopf-bifurcation of the Subsystem 2 of Model 2, taking u2 as the bifurcating
parameter. The transversality rule holds with the above set of parameters when u2 = ˘̆u2 = 0.75.
It is very clear that the interior equilibrium point ˘̆

E43 of submodel 2 of Model 2 is stable when
u2 < ˘̆u2 and unstable when u2 > ˘̆u2 for which Hopf-bifurcation occurs (see Fig.10).

7. Conclusion

In order to investigate the impact of pollution on a three species ratio dependent food chain
system, a nonlinear mathematical model is proposed and examined in this research. The primary
mathematical model is broken down into submodels and studies the effects of the pollution. It is
assumed in the model that the pollutant has direct adverse effects on all biological species in the
three species food chain system.

For the stability of Ë11 and ¨̈E21, it is observed in the analysis that when toxicant concentrations
are present, only prey populations will thrive and predator populations will generally become
extinct. (see Fig.1 and 4). For Ẽ12 and ˜̃E22, according to the findings, the top predator will likely
go extinct in the presence of toxicant, leaving only the prey and intermediate predator groups
to survive. However, the level of ˜̃E22 decreases due to the absence of intra-specific competition
(crowding) (see Fig.2 and 5). For Ē13 of Model 1 and ¯̄E23 of Model 2 makes sure that even in the
presence of toxicants, all three species can coexist. (see Fig.3 and 6).

Gakkhar and Naji [41] previously demonstrated the presence of chaotic dynamics in a three
species to one food chain system, but in this study, chaotic behaviour and the limit cycle phe-
nomenon are not seen for Model 1 and Model 2 when we consider the presence of pollutant in the
system. Similar kind of results can be observed in Chattopadhyay and Sarkar [43], the authors
have demonstrated that by boosting the level of pollution in the biological system, the prevalence
of chaos, period doubling, and limit cycle oscillations may be decreased.

In Submodel 1 and 2 ofModel 2, the hopf bifurcation behaviour has been seen (see Figs.7-9,11-
14). From the Table 1 and Fig.10, When the toxicant input rate is q0 increases, the system can
be seen to remain stable, that indicates that the toxicant causes the biological system to stabilise
under the circumstances described in the Submodel 1 of Model 2’s section on stability. From the
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Figure 15. Contrast of y, z and c with respect to time t, for different values of q0 in Submodel 2
of Model 2.

Table 2 and Fig.14, it might be seen from the calculations of the Submodel 2 of Model 2 that the
system remains stable when the toxicant input rate q0 increases, but the equilibrium point values
decrease gradually.
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