Drug induced diseases and teratogenicity: An update

Monika Kaurav¹*, Ashish Singh², Vartika Swarnkar², Simran Parveez², Prachi Goyal², Saksham Rai² & Kantrol kumar Sahu³

¹*Assistant Professor, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, UP-201306
 ²UG Scholars, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, UP-201306
 ³Assistant Professor, Institute of Pharmaceutical Research, GLA University, Mathura, UP Corresponding author Email: monika11kaurav@gmail.com

Contact no: 9926000671

Abstract:

Drug-induced disorders often known as iatrogenic diseases, are a well-known yet understudied phenomena. Various chronic conditions, multiple physicians, hospitalisation, medical or surgical operations, long-term medicine use, advancing age, female sex, and a specific class of pharmaceuticals are all risk factors for drug induced diseases. As a result, in this era of customised medicine, prescribers must comprehend and keep up with quickly changing pharmacological information. Teratogenicity is defined as the occurrence of congenital malformations and their causes as a result of teratogenic agents like some viral, spirochetal, and protozoal infections, physical agents like ionising radiations and excessive heat, and pharmacological drugs like thalidomide, excessive vitamin A, corticosteroids, antiepileptic, antimalarial, anti-leishmaniasis, and antihypertensive drugs. The prevalence of congenital birth defects ranges from 2 to 5% in the first year following delivery.

Keywords: drug induced diseases, iatrogenic diseases, adverse drug reactions, teratogenicity and teratogenic agents.

Introduction:

A drug-induced sickness is an unwanted and unforeseen side effect of a medication that causes death or morbidity with symptoms severe enough to necessitate medical care and/or hospitalisation. Pharmacological-induced disease can be caused by undiscovered or well-understood drug side effects.

Drug therapy during pregnancy is a major source of concern due to the risk of teratogenic consequences and physiologic changes in the mother because of the pregnancy. The pharmacokinetics of medications taken are affected by pregnant physiology, and certain drugs can reach the foetus and cause harm. Historical events like as the thalidomide crisis in the 1960s and the teratogenic effects linked to the use of diethyl-stilboestrol in 1971 have influenced the debate over drug usage during pregnancy and lactation. Following these incidents, the US Food and Drug Administration enacted tight laws governing treatment labelling and the use of drugs during pregnancy, demanding demonstrations of a drug's safety and efficacy before it can be sold commercially. In this review article we are going to review about the various drugs induced disease in all the major system of the body along with the mechanism of disease caused by drugs and drug induced teratogenicity [1].

Types:

Drug-induced disorders can be classified as Type 1 (predictable/expected) or Type 2 (unpredictable/unexpected). The drug's predictable or predicted side effects are an extension of the drug's usual pharmacological effects. Blood thinners (anticoagulant and antiplatelet medications, for example) can cause bleeding as a side effect. Low blood glucose levels can be caused by several anti-diabetes drugs, including insulin and sulfonylureas.

Unpredictable consequences, on the other hand, have nothing to do with the drug's therapeutic function. Amiodarone, for example, a medicine used to treat irregular heart rhythms, can harm the lungs. Drug-induced disorders are classed as mild, moderate, severe, or deadly if they result in death, depending on their severity [2]. Drug-induced disorders can impact the body's many organ systems. Several medications have been outlawed due of their potential to cause serious illnesses. Following are some examples of organ systems that have been compromised [2].

Gastrointestinal system:

In clinical practise, medication-induced gastrointestinal symptoms and endoscopic pathology are prevalent. Irritable bowel syndrome and inflammatory bowel diseases are examples of GI disorders that can be caused by medication. Drug causes symptoms via modifying GI physiology (e.g., anticholinergic medication causes constipation, NSAIDs cause ulcers), influencing the intestinal microbiota (e.g., antibiotics cause Clostridium difficile infection), or by an unknown mechanism (e.g., metformin causes diabetes). Nausea and vomiting can be triggered by mechanisms that are not related to the gastrointestinal tract [3]. Drug-induced gastrointestinal system-based disorders are discussed in Table 1.

Excretory system:

Currently, the entire population is exposed to a variety of pharmacological drugs, the majority of which are harmful and prescribed without scientific backing. Given that the kidney excretes

the majority of the drug, it's logical to believe that the kidney could be a special target for their hazardous effects. Immune-related toxic effects, analgesic neuropathy, drug-induced glomerular diseases, the direct toxic effects of the drugs, nephrogenic system fibrosis, selective toxic effects, renal hemodynamics related renal failure, and crystalline neuropathy will be presented according to their pathophysiologic mechanisms [4]. Table 2 shows the effects of drugs on the excretory system.

Disease	Drug causing	Mechanism
Oesophagitis	Tetracycline, bisphosphonate,	Due to mucosal injury
	Potassium chloride, NSAIDs, Iron	
Gastroesophageal	Nitrates, Calcium channel antagonists	Alter lower oesophageal
Reflux	Dopaminergic agents, anticholinergic drugs	sphincter pressure
	Progesterone, Methylxanthine	
Dysphagia	Anti-psychotic drugs, Alcohol	Inhibit striated muscle
		function
	Anticholinergic drugs, Calcium channel	Inhibit smooth muscle
	blocker, Theophylline	function
Nausea and	Potassium chloride, NSAIDs, Iron	Cause tissue damage
vomiting	Digoxin, Dopaminergic agent, Opiates,	Act via chemoreceptor in
	Chemotherapeutic agent	central nervous system
Constipation	Nifedipine	Inhibition of colonic motor
		activity

Table 1. Drug-induced gastrointestinal system-based diseases

Disease	Drug causing	Mechanism	
Kidney failure	Cocaine, MDMA	Due to rhabdomyolysis	
	inhalant	Renal tubular acidosis	
	heroine	Amyloidosis	
Functional renal failure	Estroprogestins, diuretics	Platelets aggregation,	
		Thrombotic microangiopathy	
Analgesic neuropathy	phenacetin	Chronic interstitial diseases and	
		neuropathy	
Glomerular diseases	Alpha methyl dopa, Penicillamine	By affecting immune system	
	Interferone, Levamisole,		
	procainamide		
Chronic interstitial	Herbal	Interstitial fibrosis	
nephritis	medications, exoticunlicenced or		
	OTC drug		
Renal impairment	Cisplatin, iphosphamide	Intracellular hydroxyl radical	
		formation	
AIN neuropathy	NSAIDs	Hapten mediated immune mechanism	

	Methicillin, Penicillin, H-pump	Other immune mechanism (IC
	inhibitor	disease ,anti tubule basement
		membrane antibodies
Prerenal azotemia	PG inhibitor, ACE-Sartans	Afferent arterioles constriction and
		efferent arterioles dilation
Obstructive intratubular HAART drugs, Triamterene		Intratubular precipitation of drugs and
ARF	Sulfa drugs, Uricosuric drugs	urine components (uric acid and
		others)
Acute glomerulo	Penicillin	Glomerular injury
nephritis		
	Cephalosporin	Glomerular + interstitial injury
Acute renal failure	Massive infusion of	Osmotic swelling of proximal tubular
	mannitol,glycerol dextran	cell

Endocrine system:

Drugs can cause endocrine problems through a variety of ways, including direct changes in hormone production, changes in hormonal axis regulation, effects on hormonal transport, binding, and signalling, and changes in counter-regulatory hormone systems. Drugs can have a significant impact on the assessment of endocrine parameters by interfering with diagnostic testing. Drug-induced endocrine and metabolic issues include glucose metabolism problems, electrolyte and calcium imbalances, and thyroid and gonadal dysfunction. Understanding the proposed mechanism of these drug effects, as well as their evaluation and differential diagnosis, may help with critical interpretation of clinical observations related to these disorders, better prediction of drug-induced adverse effects, and better treatment choices and rationales [5,6,7,8]. Drug-induced endocrine system-based disorders are discussed in Table 3.

Disease	Drug causing	Mechanism
suppression of	Hydrocortisone	The glucocorticoid receptor is activated.
TSH	Prednisolone	TRH synthesis/secretion inhibition
	Dopamine agonists	On thyrotropes, dopamine receptors (D2)
		are activated. TSH pulse amplitude is
		reduced.
	Somatostatin analogs	Somatostatin receptors in thyrotropes are
		activated. TSH secretion is inhibited.
		Thyroid hormone metabolism may have
		been changed.
Hyperprolactine	verapamil, methyldopa,	The concentration of PRL in the blood is
mia	tramadol, buprenorphine,	moderately elevated.
	methadone	

Table 3. Drug induced endocrine system-based diseases

	estrogen-containing oral contraceptives	Moderate hyperprolactinemia is frequently caused by the powerful oestrogen ethynylestradiol.
	dopamine receptor antagonists	PRL concentrations in the blood are highly raised, and in some cases can exceed 200 g/L.
	Promethazine (phenothiazine derivative),domperidone, Metcopromide	serum PRL concentrations are significantly elevated
Thyroiditis	pembrolizumab	circulating CD56, CD16 and NK cells
Grave's disease	cancer immunotherapy, alemtuzumab	Not known
Thyroid disfunction	gefitinib, erlotinib, sorafenib, sunitinib, and dasatinib	Tyrosine kinase inhibitors
Hypothyroidism	Carbamazepine,topiramat e, levetiracetam Amiodarone	T3 and T4 metabolism should be increased. Due to a feedback mechanism, the activity of type 2 5'-deiodinase enzyme in the pituitary is inhibited. Thyroid hormone transport across the plasma membrane is inhibited, preventing T4 and T3 from entering peripheral tissue.
Serotonin syndrome	serotonin-norepinephrine reuptake inhibitors (SNRIs), selective serotonin reuptake inhibitors (SSRIs), as well as monoamine oxidase inhibitors (MOI)	By blocking the catalytic enzyme monoamine oxidase, it slows down the breakdown of 5-HT.
Bone and calcium metabolism deregulation	Antiepileptics (carbamazepine, phenobarbital, phenytoin and primidone)	Cytochrome 450 inducer and PXR activator.
	Antiretroviraltherapy(abacivir,lamivudine,zidovudine and didanosine)	Activate PXR, alter vitaminD metabolism,
Hypocalemia	Antineoplastics(doxorubi cin, cytarabin,vinblastin) glucocorticoids	Not known Reduce the expression of CYP27B1, while
		increasing the expression of CYP3A1 and

		CYP24A1, the two most important enzymes in vitamin D deterioration.
Obesity	Long acting insulin, sulfonylurea ,maglinitide	Increased subcutaneous fat and fluid retention
Hyperglycemia	glucocorticoids	Insulin resistance is a problem, but so is - cell function and insulin secretion, especially at higher doses.
	Diuretics ,betablockers	Impaired insulin release from β -cell.
	Somatostatin analogs	inhibiting insulin and glucagon secretion
	Atorvastatin ,rousavastatin	Many glucoregulatory mechanisms are disrupted, resulting in reduced insulin secretion and action.
Ejaculation dysfunction	Antipsychotic , antidepressants , opoids and cannabis	increased serotonin has a central influence on the hypothalamus, mild elevation of PRL, and maybe a direct action on smooth muscle cells.
	Chemotherapeutic agents (mustine,cisplatin)	induce irreparable damage to germ cells and the seminiferous epithelium by crossing the blood-testis barrier
Sexual dysfunction	Paracetamol	Prostaglandins, which are important for sperm fertilisation, should be reduced.
	Metoclopramide	Increase PRL level
	Antihypertensives	drop in pressure and the potential for net hydraulic effects on erection
	Statins	T levels drop as steroidogenesis substrates are depleted, and sperm membranes, which are particularly high in cholesterol, are disrupted.

Cardiovascular system:

There are many drugs that used to treat cardiovascular disease and cause toxicity. The most common of them are cardiac arrhythmia caused by digitalis and toxic level of other antiarrhythmic drugs include quinidine, procainamide and phenytoin. There are various toxic effects in the cardiovascular system due to drugs that are not used in cardiac treatment but they are not widely known like sensitivity towards thromboembolism for women taking oral contraceptives. There are many anticancerous drugs that cause cardiac toxicity exemplified by cardiomyopathy caused by doxorubicin and daunorubicin. Many antipsychotic drugs and antidepressant drugs like phenothiazine can cause arrhythmia [9,10]. Here in **table 4** drug-induced cardiovascular system-based diseases are mentioned.

Disease	Drug causing	Mechanism
Arrthymia	Digitalis	Alteration in impulse formation and
	Quinidine	conduction.
		Quinidine shortens the A-V conduction
	Procainamide	time, prolong Q-T interval.
	Phenytoin	Delay in diffuse intraventricular conduction
		Impair left ventricular myocardial function.
Bradycardia	Beta blockers	Impairement of beta adernoreceptor
		stimulation
Hypertension	Prednisone	Alter sodium retaining ability.
	Oral contraceptive	Elevated level of plasma angiotensin-II
Hypotension	Phenothiazine	Alpha adernoreceptor blocking effect.
Thrombophlebitisan	Oral Contraceptive	Increase in prothrombin and clotting factor
d venous thrombosis		VII IX and X
Cardiac myopathy	Doxorubicin	Damage myocardial DNA prevent repair and
		leads to cell death.
	Lithium	Intracellular potassium is replaced by lithium
		influx.
Cardiac ischemia	Sympathomimetic	Vary degree of cardiac ionotropic
	amines	andchronotropic stimulation
Electrocardiogram	Phenothiazine	S-T segment depression, prolongation of Q-T
abnormality		nterval.

Table 4. Drug induced cardiovascular system-based diseases

Respiratory system:

There are many drugs that produce adverse pulmonary effect that are similar to agents from same pharmacological activity, like angiotensin-converting enzyme cause cough and beta blockers caused bronchospasm or NSAIDS and eoisinophilic Pneumonia, previous studies try to quantify the frequency of drug induced adverse pulmonary reaction, but thry are limited by inconsistencies by limited Patient study [11,12,13]. Here in table 5 drug induced respiratory system-based diseases are mentioned.

Table 5. Drug induced respiratory system-based diseases

Disease	Drug causing	Mechanism
Apnea	Benzodiazepine	Frequent use of inhibitors of cytochrome P450
	Barbiturates	with benzodiazepine increase risk of cardiac
	Midazolam	depression
Asthma	Acetaminophen	It reducethye level of glutathione in airway
		epithelium that lead to oxidant damage in lungs

Aspirin inducedasthma	aspirin	Cox inhibition thus producuction of
		leukotriene C4 D4 increases that promote
		histamine release
Alveolar hemorrhage	gefitinib	Express ant (3)
Bronchospasm	Beta blockers	Increase bronchiobstruction and airway
		activity
Systemic lupus	phenytoin	Inhibition of DNA methylation, the
erythematosus	Procainamide	demethylation of CD4 cell make them
		autoreactive ¹
Eosinophilic reaction	Diltiazem	Drug accumulation near epithelial alveolar
	Daptomycin	surface and pneumonia.
Hypersenstivity	Methotrexate	-
Pneumonitis		
Bronchiolitis Obliterans	Sulfasalazine	-
	Pencillamine	
Fibrosis and	Bleomycin	Stimulate production of Pulmonary antioxidant
Pneumonitis		enzyme

Skin and bone diseases:

Drug-induced skin diseases are frequently divided into two categories: acute and chronic. In acute category Erythematous eruptions, Stevens-Johnson syndrome, urticaria, serum sickness–like reaction, angioedema, hypersensitivity syndrome and warfarin anaphylaxis are mainly belonged. In chronic skin diseases category drug induced lupus and acne, and pigmentary alterations are exemplified [14].

Drugs can hasten bone loss and cause calcium levels in the blood to fluctuate. Long-term glucocorticoid use can weaken bones, leading to osteoporosis and increased fracture risk. Ethambutol and pyrazinamide, antitubercular medicines, can raise blood uric acid levels, causing gout-like symptoms [15].

Teratogenicity:

Because the physiology of pregnancy alters the pharmacokinetics of medications administered, and certain pharmaceuticals can reach the foetus and cause harm, pregnancy is a unique physiological event in which drug therapy poses a significant risk. It is impossible and maybe unsafe to completely forego pharmaceutical treatment during pregnancy because many women have medical issues that require continuous and episodic care when they become pregnant (e.g. asthma, epilepsy, hypertension). During pregnancy, new medical problems can occur, and existing ones can worsen (for example, migraines and headaches), necessitating pharmacological intervention. Some teratogenicity-causing drugs and their mechanisms of action are outlined (table 6) [16-22].

Drug	Mechanism of action/ Effects	
Asprin	Delay in the onset of labour, premature closure of the ductus	
	arteriosus, jaundice, and foetal brain damage	
Tetracycline	Increased susceptibility to cavities in the body, slowed bone	
	growth, and persistent yellowing of the teeth	
Kanamycin	Damage to the fetus's ear causes deafness (risk of ototoxicity)	
Carbamazepine	Damages DNA and has been linked to craniofacial abnormalities,	
	IQ abnormalities, and growth retardation.	
Phenobarbital	While macroscopically, this creates free radicals and DNA base	
	transversion, it also causes poor growth, motor development, and	
	foetal death.	
Tpoiramate	Hypospadias and oral clefts in neonates are connected.	
Warfarin	Vitamin K antagonists impede -carboxylation of glutamyl	
	residues, lowering protein-calcium binding capacity. The skeletal	
	anomalies could be explained by this suppression throughout	
	foetal development.	
Vitamin a	High doses of Vitamin A in pregnant rats caused neural tube	
	defects, for instance, exencephaly, spina bifida with meningocele,	
	hydrocephalus, eye malformations, and cleft palate	
Maternal smoking	Birth weight is reduced. Heart, brain, and face birth abnormalities	
	are also more likely in smokers' children.	

Table 5. Drug induced teratogenicity

Diagnosis:

Drug-induced diseases are primarily diagnosed based on the patient's or family's drug consumption history. After taking the drug, the symptoms should develop within an acceptable amount of time. To avoid missing a drug-induced disease, clinicians should ask about drug intake to any patient who comes to the clinic with a problem. Symptoms may recur if the medicine is re-administered. Re-challenge is the term for this. Re-challenge establishes the presence of a drug-induced disease; however, it is rarely done for ethical reasons.

Treatment:

The first step in treating drug-induced diseases is to notify a physician, who may decide to cease taking the medicine or, in some cases, gradually reduce the dose and replace it with a suitable alternative. This easy step can often alleviate the patient's problems. Those who do not recover may need extra therapy, depending on the severity of the adverse event.

In July 2010, the Central Drugs Standard Control Organization (CDSCO), New Delhi, Government of India, launched a national pharmacovigilance programme of India (PvPI) in recognition of its relevance. In the PvPI database, there are 84,470 Individual Case Safety Reports (ICSR). ADRs are considered to be the fourth to sixth major cause of death in the United States, accounting for more than one lakh deaths each year. We do not have DID numbers in our country, but the total ADRs in the PvPI database for the last few years is fewer

than one lakh. This illustrates our country's underreporting of ADRs in comparison to the United States of America.

Conclusion:

Patients, healthcare providers, and health administrators are all concerned about drug-induced disease. Despite the fact that it is a substantial challenge in clinical practise, it has not gotten the attention it needs. One reason for this could be that DID makes health care professionals nervous, making them uncomfortable and unwilling to participate in studies aimed at reducing DID. Several case reports on certain iatrogenic diseases have been published in India, but a complete study on the subject has yet to be published. In our country, the exact frequency or prevalence of DID is unknown.

References:

- 1. Suma, T.K., Drug induced diseases. (2017). API, 79:435-438.
- 2. Pathan, M.A., Londhe, M.D., Jadhav. D.R., Drug induced diseases. (2019). International Journal of Pharmaceutical Research and Development, 1(2):06-09.
- 3. Philpott, H.L., Nandurkar, S., Lubel. J., Gibson. P.R., Drug-induced gastrointestinal disorders. (2014). Frontline gastroenterology. 5(1):49–57.
- 4. Bartoli, E., Adverse effects of drugs on the kidney. (2015). Eur J Intern Med. 28:1-8.
- 5. Ma, R.C, Kong, A.P., Chan, N., Tong, P.C., Chan, J.C., Drug-induced endocrine and metabolic disorders. (2007) Drug Saf. 30(3):215-45.
- 6. DIAGNOSIS OF ENDOCRINE DISEASE: Drug-induced endocrinopathies and diabetes: a combo-endocrinology overview. E Diamanti-Kandarakis 1, L Duntas2, G A Kanakis 3, E Kandaraki 1, N Karavitaki 4, 5, E Kassi 6, S Livadas 7, G Mastorakos 8, I Migdalis 9, A D Miras 10, S Nader 11, O Papalou 1, R Poladian 12, V Popovic 13, D Rachoń 14, S Tigas 1. https://doi.org/10.1530/EJE-19-0154, s.l. :european journal of endocrinology, 2019.
- Sklar, C.A., Mertens, A.C., Mitby, P., Whitton, J., Stovall, M., Kasper, C., Mulder, J., Green, D., Nicholson, H.S., Yasui, Y., et al. (2006). Premature menopause in survivors of childhood cancer: a report from the childhood cancer survivor study. Journal of the National Cancer Institute 2006.
- 8. Rashid, H., Ormerod, S., Day, E., needs to Anabolic androgenic steroids: what the psychiatrist know (2007). Advances in Psychiatric Treatment.
- 9. Breckenridge, A.M., Drug-induced cardiovascular disease. (1979). Br Med J. Mar 24;1(6166):793-5.
- 10. Deglin, S.M., Deglin, J.M., Chung, E.K. Drug-induced cardiovascular diseases. Drugs. (1977) Jul;14(1):29-40.
- Solhjoo, M., Bansal, P., Goyal, A., Chauhan, K., Drug-Induced Lupus Erythematosus. (2021). In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing..
- 12. Uppal, P., LaPlante, K.L., Gaitanis, M.M. et al., Daptomycin-induced eosinophilic pneumonia - a systematic review. Antimicrob Resist Infect Control 5, 55 (2016).
- 13. Cooper, J.A., Zitnik, R.J, Matthay, R.A., Mechanisms of drug-induced pulmonary disease. Annu Rev Med. 1988;39:395-404.
- 14. Clinard, V., Jennifer, D.S., US Pharm. 2012; 37(4):HS11-HS18

- 15. Bohannon, A.D., Lyles, K.W., Drug-induced bone disease. Clin Geriatr Med. (1994) 10(4):611-23.
- 16. Punam, Sachdeva., Patel, B.G., and Patel, B. K., DRUG USE IN PREGNANCY, A POINT TO PONDER. (2021). INDIAN JOURNAL OF PHARMACEUTICAL SCIENCES,.
- 17. Nie, Q., Su. B., Neurological teratogenic effects of antiepileptic drugs during pregnancy. (2016) Wei J. 12(4):2400-2404.
- 18. A, Ornoy.. Neuroteratogens in man: an overview with special emphasis on the teratogenicity of antiepileptic drugs in pregnancy. 22(2):214-26, 2006, AUG :ReprodToxicol.
- Hunt, S., Russell, A., Smithson, W.H., Parsons, L., Robertson, I., Waddell, R., Irwin, B., Morrison, P.J., Morrow, J., Craig, J., Epilepsy and Pregnancy Register. Topiramate in pregnancy: preliminary experience from the UK Epilepsy and Pregnancy Register. (2008). 22;71(4):272-6.
- 20. Beckman, D.A., Brent, R.L., Mechanisms of teratogenesis. (1984) Annu Rev PharmacolToxicol, 24:483-500.
- 21. Piersma, A. H., Hessel, E. V., & Staal, Y. C. (2017). Retinoic acid in developmental toxicology: Teratogen, morphogen and biomarker. Reproductive toxicology (Elmsford, N.Y.), 72, 53–61..
- 22. Andrade, S. E., Gurwitz, J. H., Davis, R. L., Chan, K. A., Finkelstein, J. A., Fortman, K., McPhillips, H., Raebel, M. A., Roblin, D., Smith, D. H., Yood, M. U., Morse, A. N., & Platt, R. (2004). Prescription drug use in pregnancy. American journal of obstetrics and gynecology, 191(2), 398–407.