A Review on Photocatalytic Conversion of CO₂

Preeti Pandey

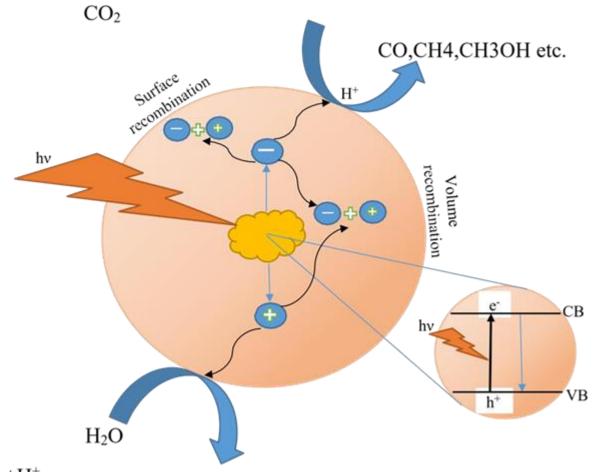
Kalinga University Email id-preeti.pandey@kalingauniversity.ac.in

Abstract

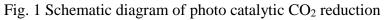
Due to the huge potential to supply an alternative clean fuel and tackle the problems associated with global warming, photo catalytic conversion of CO_2 to either a renewable fuel or valuable compounds using solar energy has gotten a lot of interest. The creation of innovative photo catalysts for CO_2 photo reduction has been explored, as the current state of photo catalytic CO_2 conversion over metal oxides is examined in this research well as a quick summary of the essential features of artificial photosynthesis. Several critical criteria for high-efficiency CO_2 photo reduction have also been highlighted, as well as the recent development of photo catalytic reactor design for this artificial photosynthesis. Global warming is regarded as one of the most pressing environmental issues confronting humanity. Because carbon dioxide (CO_2) is one of the most common greenhouse gases in the atmosphere, it plays a significant role in global climate change. CO_2 contributes to the rise in global temperature by absorbing and re-emitting infrared radiation. According to the International Panel on Climate Change (IPCC), atmospheric CO₂ levels could reach 590 ppm by 2100, with a 1.9°C rise in global mean temperature. The greenhouse effect will have a global and significant impact in a variety of ways, including ice melting at the poles, rapidly rising sea levels, and increased precipitation around the world.

Keywords: photo catalytic, nanocomposites, carbon dioxide,

1. Introduction


Carbon dioxide (CO_2) , one of the potential greenhouse gas, is a colourless, odourless and test less gas. It is mainly formed during animal respiration, organic decomposition and combustion of fossil fuels. With the speedy development of society economy, the demand for fossil fuels continuously rises. Currently the worldwide energy expenditure is about 1.5×1010 kW, and it is assumed that it may rich to 2.3×1010 kW by 2050 [1]. The immoderate use of fossil fuels, not only create energy crises, but also release huge amount of greenhouse gas carbon dioxide into the atmosphere. The excessive concentration of carbon dioxide in the atmosphere makes global warming to become a major concern in the recent years [2]. Global warming is nothing but the gradual rise in global temperature, which brought a series of problems, including melting of ice at the earths pole, sea water level rising and irregular weather pattern [3]. Therefore, it is very crucial to discover a promising solution to mitigate such issue [4]. The main methods for the mitigation of CO_2 include the biological fixation of CO_2 , the capture and storage of CO_2 and the chemical reduction and utilization of CO₂ [5,6]. However, it is not economically worth to capture and store carbon dioxide as the potential leakage of carbon dioxide is one of the mess. With the decrease in global flora coverage, the natural CO_2 fixation by the green plant also become not feasible. That's why during past few decades researchers are more focused on the discovery of various methods for the artificial reduction of CO₂ [7], which include bioelectrochemical, electrochemical, thermochemical and photo catalytic method. Electrochemical reduction of carbon dioxide is carried out in solution, using an electrochemical cell as an energy source, to reduce CO₂ at the cathode. However, this technology requires additional electricity, which increases the overall cost of this process. Also, the evolution of hydrogen in electrochemical reduction of CO₂ appreciably affect the purity of the product. Bio-electrochemical reduction of carbon dioxide, which utilizes the microorganism as catalyst is a novel method for CO₂ reduction. However, as the microorganisms require living environment for their activity, the bio electrochemical reduction of carbon dioxide only achieved in suitable experimental condition and also at extremely slow rate, which restrict its development in practical purpose. The thermochemical method for the CO₂ reduction requires extremely high temperature, which increase the energy consumption as well as it requires only such catalyst which maintain their catalytic activity at higher temperature. Compared with all the above methods, the photo catalytic conversion of CO₂, using sustainable solar energy is more energy efficient, more economically friendly and more promising, as this process is non-polluting and does not require any extra energy [8].

There is a great importance on the solar energy driven reactions. Solar energy can be used to drive various spontaneous and non-spontaneous reactions. The process is known as Photocatalysis. The photo catalytic conversion of carbon dioxide not only mitigate the global greenhouse effect, but also solves the growing energy crises, by producing useful fuels with higher energy, such as methane (CH₄), methanol (CH₃OH), formic acid (HCOOH), acetaldehyde (HCHO), carbon monoxide (CO) etc. As CO₂ is a stable compound, it is very difficult to make it react with other substances. The C=O bond enthalpy in CO₂ is 805 kJ mol⁻¹ [9], which is much elevated than that of C-O (327 kJ mol-


1), C-C (336 kJ mol⁻¹) and C-H (411 kJ mol⁻¹), respectively [10]. For the effective reduction of CO₂, it is very important to overcome the kinetic inertia as well as the thermodynamic energy barrier. Various semiconductor based photocatalyst have been discovered for the effective photoreduction of carbon dioxide in to different liquid and gaseous products. The catalysts used in photoreduction of CO₂ are TiO₂ [11], MgO [12], Ga₂O₃ [13], g-C₃N₄ [14], [Re (bpy) (CO)₃{P(OEt)₃}]⁺ [15] etc. However, among them TiO2 is the most frequently used, because of its high stability, law cost and non-toxicity. But TiO2 has very low photocatalytic activity. So, researchers are more focused on developing many alternative catalyst with higher photocatalytic activity of CO₂ reduction, such as N-TiO₂-001/GR [16], Pt²⁺-P0/TiO₂ [17], Pt- loaded g-C₃N₄ [18], graphene oxide-CdS [19] and dye/TiO₂/Re(I) [20]. In 1979, found that, a series of semiconductor possess electrical bias under 500W Xe or Hg lamp. Therefore, different products such CH₄, CH₃OH, CO, HCOOH, HCHO etc. are formed when different photocatalyst are employed in the photocatalytic CO₂ conversion [21]. In product selectivity of the CO_2 reduction, the photocatalyst play a very crucial role. Many researches have been conducted on the formation of a single product under visible light in order to reduce the separation cost of the products. However, there is a connection of the product selectivity with the reaction system and routes, which makes it very complicated. Thus not only the catalyst exert a significant effect on the product selectivity, but also the reaction conditions such as pH, reaction system, temperature, pressure and light intensity have a great influence on the product selectivity. This review mainly highlights the advancement in the field of photo catalytic reduction of carbon dioxide, in the view of choosing suitable photo catalyst to form a selective desirable product.

2. Photocatalytic Reduction of Carbon Dioxide

The photo catalytic reduction of CO_2 mimics the process of photosynthesis for green plants, in which the photo catalysts, playing the role of green plants, converts carbon dioxide to valuable chemicals using visible or ultra violet light. The principle behind the photo catalytic conversion of CO_2 is illustrated in figure 1.

$$O_2+H^+$$

Generally, the overall reaction can be categorized in to four steps: Firstly the activation of the photo catalyst (mainly a semiconductor) takes place by using UV or Visible light from the sun or else by using an illuminated light source. Eventually, the electrons in the valence band (VB) jumps in to the conduction band (CB) of the semiconductor, leading to the formation of hole in the valence band. In this way the electron (e-) and the positive whole (h+) pair is photogenerated, which functions as the reductant and oxidant for reducing and oxidizing the products respectively. Thirdly the separation of electron-hole pair takes place and they transfer to the surface of catalyst. Finally the reduction of CO₂ occurs by utilizing the negative electrons and forms the corresponding reduced products such as CH₄, CH₃OH, CO, HCHO, HCOOH, and other hydrocarbons [22]. The following criteria are generally important for an effective system, required for the photo catalytic reduction of CO₂:

a) The photo-generated whole present on the valence band (VB) of the semiconductor should possess more positive redox potential than that of the redox potential of O_2/H_2O .

b) The photo-generated electrons present on the conduction band (CB) of the semiconductor should possess more negative redox potential than that of the redox potential of CO2 to the formed reduced product (e.g. CH_3OH/CO_2).

c) CO_2 or CO_2^- should be effectively absorbed on the surface of the photo catalyst.

d) The photo catalyst should be highly stable [30,31].

The photo catalytic reduction of CO₂ is mainly carried out in liquid and gas phase system. It has been found that in the gas phase system the major products are CO and CH4, whereas the major products in the liquid phase system are CH₃OH and HCOOH [23,24,25]. Moreover to enhance the photo catalytic activity and product. Many reports suggested that the modification of catalyst by using different metals could boost the reduction of CO₂ to CH₄, due to the increase in electron density on the surface of the catalyst after doping of the metal species [26, 27]. In theory, the formation of CO_2 is easier than that of the formation of CH₄ during the photoreduction of CO₂, as more electrons are required to generate CH₄. But the formation of CO could be arrested by the increasing electron density due to metal doping. The surface electron density can also be increased by constructing a heterojunction. Discovered that CuxO-TiO₂ had inherent p-n heterojunction, which enables excellent light absorption and fast charge separation to the catalysts, enhancing the selectivity for CH4 generation (221.63 ppm $g^{-1} h^{-1}$). The CuO supported on the surface of NaTaO₃ photo catalyst could enhance the CO₂ absorption and the reaction activity of CO₂ reduction and it was found that the maximum yield of CH3OH was 335.93µmol g⁻¹ h⁻¹. For the first time, in 1979, the photo reduction of CO_2 by using semiconductor based photocatalyst, such as TiO_2 and CdS was reported by fujishima and his co-workers. After a few years of research, a series of semiconductors such as CdS, TiO₂, Bi₂WO₆ and ZnO could serve for this purpose. Even so, most of these semiconductor based photocatalysts are photoactive in UV region and their synthesis methods are much more complicated and also uneconomical. Therefore to design and fabricate novel, effective and stable visible light driven (VLD) photocatalysts are the principal challenge in this field [28, 29,30].

Graphitic carbon nitride (g-C3N4) has evolved as a promising photocatalyst due to its excellent physical and chemical properties such as large surface area, high quantum efficiency, interfacial charge separation and transport and feasibility of modification either through the formation of composite or through the incorporation of profitable surface functionalities. It is also desirable and economically feasible alternative catalyst to use in the industries as it can be easily generated from cost effective and abundant raw materials by heating urea, melamine and other nitrogen rich compounds. Furthermore, it can be considered as environmentally friendly, as it does not contain any toxic metal ion and can be easily handled and disposed [31-33].

3. Product Selectivity

The photo catalytic reduction of CO_2 is series of proton-coupled two electron reaction. Based on the above discussion, a number of reduced products including CH₄, CH₃OH, CO, HCOOH, HCHO and CH₃CH₂OH are detected during this process. Some important catalyst and their product selectivity in photo catalytic reduction of CO₂ are listed in Table-1.

Table1. Main catalysts and their product selectivity in photocatalyticreduction of CO2.

S.No	Catalyst	Main Products	Productivity	Enhanced Mechanism
1	TiO ₂ .SiO ₂	CH ₄	2.42 μmol·g ⁻	Hydrophobicity modification composite photocatalyst
2	Ti ₃₀ Si ₇₀ MCM-41	CH ₄	1.900 $\mu mol \cdot gcat^{-1}.$ L^{-1}	Sensitization of photosensitizer
3	Ag-MgO-TiO ₂	CH ₄	37.18 $\mu mol \cdot gcat^{-1}.$ L^{-1}	Strong local electric field of surface Plasmon resonance to CO2 reduction
4	Cu ₂ ZnSnS ₄ -ZnO	CH ₄	138.90 μmol·g ⁻¹ . L ⁻¹	Inherent direct Z scheme heterojunctio
5	V0-rich Pt/Ga ₂ O ₃	СО	21.0 μmol·h	Efficient separation of photoelectro hole pairs on Pt/Ga_2O_3 led by V_0
6	Bi ₄ O ₅ I ₂	СО	19.82 µmol·h ⁻¹ ·g ⁻	High lifetime of charge carrier ar more electrons in the reaction
7	g-C ₃ N ₄ /Bi ₂ WO ₆	СО	5.19 μmol·g ⁻¹ ·h ⁻	Band regulation and photosensitizatio p-n heterojunction between monom interfaces
8	Fe ₂ O ₃ /Cu ₂ O	CH ₃ OH	5.0 μmol·gcat ⁻¹	Deposition of Cu nanoparticles
9	Cu/TiO ₂	CH ₃ OH	1.8 μmol·cm ^{−2} ·h 1	Matching band between SnO2 NR ar Fe2O3 Doping of Cu
10	SnO ₂ NRs/Fe ₂ O ₃ NTs	CH ₄ /CH ₃ OH	$2.05 \\ \text{mmol} \cdot \text{L}^{-1} \cdot \text{cm} \\ 2$	Doping of S Loading of ZnPC
11	Ru(II)multinuclear complexes Ru		TOFHCOOH = 44.9 min^{-1}	[Ru(bpy)3] ²⁺ supramolecular redo sensitizer

	Ru(CO			
12	Bi ₂ WO ₆	CH ₃ OH/C ₂ H ₅ OH	47.O	Photosensitizer unit with high effective
			µmol·g ⁻¹ .h ⁻¹	state Introduction of conductiv
				polymers (polyaniline, polypyrrole, ar
				polythiophene
13	GO-TiO ₂ composi	CH ₃ OH/C ₂ H ₅ OH	144	Synergistic interaction of interfa
			µmol∙g ^{−1} .h [−]	electron transfer between constitue
				phases
14	Bi ₂ S ₃	HC(O)OCH ₃	300.94	Special hierarchical structure, good a
			µmol∙g ^{−1}	permeability and high light ability

3.1 Methane (CH4):

The photo catalytic reduction of CO_2 to CH_4 has been more fascinating due to the more stable physical and chemical properties of CH_4 . Also it can occurred at a lower potential from the thermodynamic point of view. It was found that, for the photo catalytic conversion of CO_2 to CH_4 , TiO_2 is the most frequently used photo catalyst. The catalysis process are usually carried out under UV light at the initial stage of photo catalytic CO_2 reduction. The reduction of CO_2 under UV350 in the TiO_2 suspension system was prominent with the 2propanol as a hole scavengers. However the lower yield of CH_4 was observed in the oxygen saturated system due to the competition effect of O_2 . It could be postulated that, the concentration of O_2 and the whole scavenger (2-propanol) greatly related to the CH_4 production, according to the mechanism [34].

 $TiO_{2} \xrightarrow{hv} e^{-} + h^{+}$ $h^{+} + 2^{-} \text{ propanol} \xrightarrow{} \text{ organic radical } + H^{+}$ $CO_{2} + 8H^{+} + 8e^{-} \xrightarrow{} 2H_{2}O + CH_{4}$ $e^{-} + O_{2} \xrightarrow{} O_{2}^{-}$

Firstly, CO₂ absorbs on the surface of TiO₂ and accept electrons from the conduction band of the semiconductor (TiO2) under UV radiation. CO₂, then react with the acidic hydrogen to produce a formyl (HC•O) group. Thereafter, the formyl group in acidic solution, get converted in to glyoxal (HOC•HCHO), which subsequently accepts the proton and electron to react with a sacrificial hole scavengers (such as formate, CH₃OH and HCHO) to form acetaldehyde. Finally, the formed acetaldehyde splits in to CO and CH₄ by releasing water through photolysis. From the above mechanism, it was found that, in the photocatalytic conversion CO₂ to CH₄, acidic protons play an important role. However, the pure TiO₂ catalyst exhibits poor ability for the photo-conversion of CO₂ and selectivity for the product due to the deficiency of itself property, such as the wide band gap and fast charge recombination. To solve these drawbacks, doping of the modifiers (Cu, Bi, Ni etc.), having higher catalytic activity and higher reduction potential, has been adopted. It was found the yield of CH₄ over Ni-doped TiO₂ nanoparticles noticeably increased as compared to that of the pure TiO₂ catalyst, which should be attributed that the band gap of TiO₂ narrowed with the doping of Ni [35]. However, extreme Nickel doping can cause the blockage of pores in TiO₂, resulting in the reduction of the surface area of catalyst and the increase in e^-h^+ recombination. Recently, the doping of Bismuth (Bi) on to the photo catalyst has attracted most interest because Bi, as a semimetal element exhibit the ability of hole trapping and depletion in the absence of a sacrificial agent. Meanwhile the Bi- TiO₂ showed a better absorption capacity of CO₂ than that of pure TiO₂ [36]. Also the photo excitation rate of the composite catalyst was rapid as compared to that of pure TiO₂, thus the photo excited electrons were efficiently transferred to the CO₂ molecule. Simultaneously, water is captured by the holes in the valence band of Bi- TiO₂ and converted in to 'OH and H', which undergo reaction with the CO radical, produced from the reduction of CO²⁻ over Bi-TiO₂ to generate CH₄. Pt-TiO₂ photo catalyst was mixed with CdSe quantum dots (2.5 and 6.0 nm) and was sensitized for the photo reduction of CO_2 (40 Pa) with moisture (400 Pa) under visible light [37]. It was found that, the photoexcitaion of electrons becomes more feasible under visible light by the incorporation of CdSe quantum dots in to the photocatalyst. With this system, the photoreduction of CO₂ to CH₄ (major) and CH₃OH (minor) was observed for 4-6 hours. However the catalyst was deactivated due to the oxidation of CdSe quantum dots.

3.2 Carbon Monoxide (CO):

On the basis of the reaction kinetics, it is more feasible to produce carbon monoxide from the photo reduction of carbon dioxide than that of CH₄ and CH₃OH. Because the production of the later requires more number of electrons. It was found that PbS quantum dots (4nm) mixed with Pt/TiO₂ photo catalyst were found to be effective for boosting the photo reduction of CO₂ to CO [30]. The photo excitation of electros between the band gaps of TiO₂, using visible light is very tough. However the photo excitation of electrons between the band gap of PbS quantum dots is feasible using visible light and the excited electrons could be introduced in to the conduction band of TiO₂, resulting in an enhancement in the photo catalytic efficiency of TiO₂. Also CdSe-Pt/TiO₂ was reported to produce carbon monoxide as major product from the photo catalyst $A^{2+}La_4Ti_4O_{15}$ (A= Ca, Cs and Ba) were applied to the photo reduction of CO₂ for producing CO as a major product with a minor amount of formic acid. Silver nanoparticle (~10 nm) present on the edge sites of the layered BaLa₄Ti₄O₁₅, were found to be effective for the reduction of CO₂ to CO.

 $CO_2 + 2H^+ + 2e^-(Ag-nanoparticles)$ $CO + H_2O$ E0298K = -0.11V

The photo reduction of CO_2 in water can also achieved using $Na_2Ti_6O_{13}$ nanoparticles to form CO as major products with minor amount of H_2 and O_2 as by-products. The selectivity for CO can be increased up to 60% by carried out the photo catalytic reaction in the basic aqueous solution of Na_2CO_3 . The photo catalytic reduction of CO_2 to CO can takes place over alkali and alkaline earth metal ion (Mg^{2+},Na^+,K^+) exchanged hydrogen titanate nanotubes (H-TNTs) in stimulated sunlight. Here, the efficiency of the photo-reduction of CO_2 to CO was mainly enhanced by the ion exchange between H+ and alkali or alkaline earth metal ions. In addition, the photo catalytic reduction of CO₂ to CO can also be achieved by using environmentally friendly g-C3N4 photo catalyst. The photo catalytic efficiency for the reduction of CO₂ to CO using g-C₃N₄ at visible wavelength can be further improved by the addition of the 0.03 weighted amount of Barbituric acid as a co-monomer in to unmodified g-C₃N₄ sample, derived from urea (NCU) to produce optimum sample (CNU-BA0.03).It was reported that by using CNU-BA0.03, the photo catalytic efficiency for the conversion of CO2 to CO has been increased up to 15 folds in comparison with the CNU. Additionally, some other co-monomers like 2-aminobenzonitrile (ABN), diamino maleonitrile (DAMN) and 3 aminothiophene-3-carbonitrile (ATCN) were also copolymerized with g-C₃N₄ by urea to boost the photo catalytic efficiency. The maximum CO formation was achieved by employing CNU-ATCN0. 03 sample, which has 19-fold greater activity than that of CNU. It was found that, the photo catalytic efficiency of g-C3N4 in the photo catalytic conversion of CO2 to CO can also be enhanced by using g-C₃N₄/N-TiO2 nanocomposite, which was synthesized by doping nitrogen on TiO2 using urea and Ti(OH)₄ as precursors. The studied mass ratio of urea to Ti(OH)₄ were 50:50 (CT-50), 60:40 (CT-60) and 80:20 (CT-80), among which, the CT-50 sample shows highest CO evolution (5.7µmol) with 12Hr of light irradiation.

3.3 Multi-carbon Products:

Over the last few decades, enormous efforts have been made in the context of phptocatalytic reduction of CO₂. However, the selective formation of C1 products such as CO, CH₄ and CH₃OH can be achieved to a greater extent, but the production of multi-carbon products has still a major challenge in this field. It was found that, a TiO₂-graphene two dimensional (2D) hybrid structure was developed by the research group, which forms an excellent interface through Ti-O-C bond and contain ample Ti⁺³ species on the surface. The graphene based interface permits efficient charge transfer and the photo generated electrons are trapped in the Ti+3 sites synergistically preventing e⁻h+ recombination. Due to this synergistic effect, the formation of C₂H₆ in photo reduction of carbon dioxide was favored, whose yield can be enhanced with the graphene content in the hybrid structure. Likewise, the Cu⁺² sites in CdS-Cu⁺²/TiO₂ exhibit their role in imprisoning the photo generated electrons.

3.4 Other Products

During the photo catalytic conversion of CO_2 , some other organic products like HCOOH and

HCHO are also produced. It was found the photo reduction of CO₂ to formaldehyde can be achieved in purified water by using various semiconductors such as TiO₂, ZnO, CdS, GaP, SiC and WO₃. Also an aqueous suspension of TiO₂ was found to produce formaldehyde at a rate of 2.0 μ molh⁻¹gcat⁻¹. The photo reduction of CO₂ to formaldehyde can also be achieved under visible irradiation by using Ba₃Li₂Ti₈O₂₀ photo catalyst. The catalytic efficiency of Ba₃Li₂Ti₈O₂₀ can be enhanced by the incorporation of CuO particles due to the formation of n-p heterostructure between the n-type Ba₃Li₂Ti₈O₂₀ and the p-type CuO, which enables the separation of photo generated e⁻-h+ pair and the accumulation of proton for the conversion of CO₂ to HCHO. Acetic acid (HCOOH) is also a common product in the photo reduction of CO₂. pH dependent photo catalytic reduction of CO₂ to HCOOH and CH₃OH by using graphene-TiO2 under visible light. When the pH was 8, up to 90% selectivity for HCOOH was achieved. It has been reported that for the reduction of CO₂ to HCOOH, BiYO₃ doped with varying amount of Cu, could function as a highly efficient photo catalyst under visible light irradiation. The doping of Cu can not only replace the Bi⁺³ in BiYO₃ and the generate oxygen vacancies to encountered electrons and inhibits the recombination of e⁻-h+ pair, but also decrease the size of the composite catalyst, resulting in an increase of the surface area and decrease of the resistance to surface charge transfer. The formic acid was also detected when an anatase-type TiO₂ powder was inserted in to the supercritical CO₂ and was irradiated under UV-Visible light, followed by water addition.

Acetaldehyde can also produce during the photo catalytic reduction of CO_2 . The NiO/InTaO₄ photo catalyst were found to be effective for the gas phase Photo reduction of CO_2 using a monolith reactor to form acetaldehyde as a major product along with a minor amount of methanol.

4. Scope for future

In summary, the performance and applications of a wide range of photo catalysts for the conversion of CO₂ to valuable chemicals and fuels are the subject of this review. With a concise overview at the end of each section, the study discusses the surface interaction of photo catalyst with CO₂ molecules in various reaction media and investigates several ways for regulating photo catalyst behavior and final product selectivity. Photo catalytic CO₂ reduction with semiconductors is a long-term solution for lowering CO_2 levels in the environment. The efficiency of a photo catalyst is impacted by a variety of parameters, including CO₂ adsorption and activation, crystal structure, band bending, band gap, surface defects, recombination of charge species and excitation of charge carriers, and photo catalyst size. As a result, while designing, developing, or manufacturing photo catalyst, these factors should be carefully evaluated and adjusted. Advanced in-situ characterization techniques must be used to better visualize and comprehend reaction kinetics, processes, product production, photo catalyst surface alteration in relation to reaction duration, and to assess the rationale for the reduced energy barrier, which remains a mystery. In addition, studies in cohorts with commercialization and large-scale industrial photo catalytic applications should focus on the development of rapid experimental synthesis techniques, charge carrier simulation algorithms, efficient visible light responsive photo catalysts and mathematical models for photo catalytic reduction reactions.

5. Conclusion:

At present days, the global climate change and depletion of energy sources are the most critical issues, world is tackling, due to the worldwide industrialization and population uplifting. The conversion of CO_2 to clean and valuable hydrocarbons under visible radiation or ultra violet radiation by using photo catalyst has been effectively carried out under experimental condition. It has been manifested to be a cost effective technology to solve above two problems. The choice of the suitable catalyst is important to achieve high

efficiency and product selectivity in photo catalytic reduction of CO_2 . The catalytic efficiency as well as the product selectivity of a bare photo catalyst can be boost by the modification of the photo catalyst in different ways like metal doping, heterojunction construction and sensitization. TiO₂ is the most frequently used photo catalyst because of its good stability, high activity, and non-toxicity. However recently new types of composite catalysts were emerging because of their very good surface structure and low oxidation potential.

As CO₂ is a chemically inert molecule the reduction of CO₂ require very harsh conditions (i.e. high pressure and high temperature) and large amount of energy input. Hence the photo reduction of CO₂ to valuable chemicals is still only in experimental stage and far apart from the practical application. In the past decades, with extensive efforts, the photo catalytic conversion of CO₂ has witnessed its blossoms but still it encounters bottleneck in particular product selectivity and reaction activity. Therefore finding more effective photo catalyst and improving the efficiency of existing photo catalysts for the photo catalytic reduction of CO₂ is important. The major issues in the photo reduction of CO₂ are the low yield of the reduced product. The yield obtained in the laboratory condition is not sufficient to meet the necessity in practical production. In general, the reduced products are typically, a mixture of various organics as the photo reduction of CO₂ is not selective. The selectivity for a particular product in the photo catalytic reduction of CO₂ can be achieved by modifying the photo catalysts in different ways. In order to further enhance the selectivity and catalytic performance, the future researches are carried out on a suitable optimization of surface properties of the photo catalyst. Meanwhile, light sources also plays a crucial role. In practical the photo catalytic reduction of CO₂ in ultra violet light is quite expensive as huge energy is required for ultra violet excitation. Thus recent researches are slowly transferring to the visible light i.e. the free unlimited source. Also it is useful to discover efficient technology to separate and purify the photo catalytically reduced products. If, it so happens the research on photo catalytic reduction of CO₂ can focus on the yield of the product in place of the selectivity.

To summarize this, there has been a tremendous development in designing and fabrication of different photo catalysts, which shows excellent activity toward the photo catalytic reduction of CO_2 . However, researches are going on to further enhance the efficiency of these photo catalysts.

Acknowledgments

Author are grateful to the Chemistry Department of the Kalinga University, Naya Raipur, India for providing facilities.

References

1. H.Q. Sun and S.B. Wang, "Research advances in the synthesis of nanocarbon-based photocatalysts and their applications for photocatalytic conversion of carbon di-oxide to hydrocarbon fuels", Energy Fuel. vol 28, no. 1, (2013) pp. 22–36.

2. C. C. Wang, Y. Q. Zhang, J. Li and P. Wang, "Photocatalytic CO₂ reduction in metalorganic frameworks: a mini review", Journal of Mol. Structure. vol. 1083, no. 1 (2015), pp. 127–136.

3. H. Khatib, IEA world energy outlook 2011-A comment, Energy Policy. vol. 48, no. (2012), pp. 737–743.

4. J. L. Qiao, Y. Y. Liu, F. Hong and J. J. Zhang, "A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels", Chemical Soc. Reviews. vol. 43, no 2, (2014), pp. 631–675.

5. T. M. Su, Z. Z. Qin, H. B. Ji, Y. X. Jiang and G. Huang, "Recent advances in the photocatalytic reduction of carbon dioxide", Environmental Chem. Letters. vol. 14 (2016), pp. 99–112.

6. Z. Z. Yang, J. J. Wei, G. M. Zeng, H. Q. Zhang, X. F. Tan, C. Ma, X. C. Li, Z. H. Li and C .Zhang, "A review on strategies to LDH-based materials to improve adsorption capacity and photo reduction efficiency for CO₂", Coordination Chem. Reviews. vol. 386, (2019), pp. 154–182.

7. K. F. Li, X. Q. An, K. H. Park, M. Khraisheh and J.W. Tang, "A critical review of CO₂ photoconversion: catalysts and reactors, Catalysis Today. vol. 224, no 1, (2014), pp. 3–12.

8. S. N. Habisreutinger, L. Schmidt-Mende and J. K. Stolarczyk, "Photocatalytic reduction of CO₂ on TiO₂ and other semiconductors", Angewandte Chemie Int. Ed. English. vol. 52, no. 29, (2013), pp. 7372–7408.

9. O. Ola and M. M. Maroto-Valer, "Review of material design and reactor engineering on TiO₂ photocatalysis for CO₂ reduction", Journal of Photochemistry and Photobiology C Photochemistry Reviews. vol. 24 (2015), pp. 16–42.

10. Y. Y. Liu, Y. M. Yang, Q. Sun, Z.Y. Wang, B. B. Huang, Y. Dai, X. Y. Qin and X. Y. Zhang, "Chemical adsorption enhanced CO₂ capture and photoreduction over a copper porphyrin- based metal organic framework", ACS Applied Mater. Interfaces. vol. 5, no. 15, (2013), pp. 7654–7658.

11. S. Neatu, J. A. Macia-Agullo, P. Concepcion and H. Garcia, "Gold-copper nanoalloys supported on TiO₂ as photocatalysts for CO₂ reduction by Water", Journal of American Chem. Society. vol. 136, no. 45, (**2014**), pp. 15969-15976.

12. K. Teramura, T. Tanaka, H. Ishikawa, Y. Kohno, T. Funabiki, "Photocatalytic reduction of CO₂ to CO in the presence of H2 or CH4 as a reductant over MgO", Journal of Phy. Chemistry B. vol. 108, no. 1, (2004), pp. 346–354.

13. T suneoka, K. Teramura, T. Shishido and T. Tanaka, "Adsorbed species of CO_2 and H_2 on Ga_2O_3 for the photocatalytic reduction of CO2", Journal of Phy. Chemistry C. vol. 114, no. 19, (2010), pp. 8892–8898.

14. P. Niu, Y. Q. Yang, J. C. Yu, G. Liu, H. M. Cheng, Switching the selectivity of the photoreduction reaction of carbon dioxide by controlling the band structure of a $g-C_3N_4$ photocatalyst, Chemical Communications. (Camb.) vol. 50, (2014), pp. 10837-10840.

15. H. Hori, F.P.A. Johnson, K. Koike, O. Ishitani, T. Ibusuki, Efficient photocatalytic CO₂ reduction using [Re(bpy)(CO)3{P(OEt)3}]⁺, Journal of Photochem. Photobiology A: Chemistry. vol. 96, no. 1-3, (**1996**), pp. 171–174.

16. W. J. Ong, L. L. Tan, S. P. Chai, S. T. Yong and A. R. Mohamed, Self-assembly of nitrogen- doped TiO₂ with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane, ACS Nano Res. vol. 7 (2014), pp. 1528–1547.

17. Z. Xiong, H. B. Wang, N. Y. Xu, H. L. Li, B. Z. Fang, Y. C. Zhao and C. G. Zheng, Photocatalytic reduction of CO_2 on Pt2+-Pt0/TiO2 nanoparticles under UV/Vis light irradiation: a combination of Pt^{2+} doping and Pt nanoparticles deposition, International Journal of Hydrogen Energy. vol. 40, no. 32, (2015), pp. 1–4.

18. W. J. Ong, L. L. Tan, S. P. Chai and S. T. Yong, "Heterojunction engineering of graphitic carbon nitride $(g-C_3N_4)$ via Pt loading with improved daylight- induced photocatalytic reduction of carbon dioxide to methane", Dalton Transactions. vol. 44, no. 3, (2015), pp. 1249–1257.

19. J. G. Yu, J. Jin, B. Cheng and M. Jaroniec, "A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO₂ to solar fuel", Journal of Mater. Chemistry A. vol. 2, no. 10, (**2014**), pp. 3407–3416.

20. D. I. Won, J. S. Lee, J. M. Ji, W. J. Jung, H. J. Son, C. Pac and S. O. Kang, "Highly robust hybrid photocatalyst for carbon dioxide reduction: tuning and optimization of catalytic activities of dye/TiO₂/Re(I) organic-inorganic ternary systems", Journal of American Chemical Society. vol. 137, no. 42, (2015), pp. 13679–13690.

21. T. Inoue, A. Fujishima, S. Konishi and K. Honda, "Photo electrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders", Nature. vol. 277, no. 5698, (1979), pp. 637–638.

22. X. B. Chen, S. H. Shen, L. J. Guo and S. S. Mao, "Semiconductor-based photocatalytic hydrogen generation", Chemical Reviews. vol. 110, no. 11, (2010), pp. 6503–6570.

23. D. S. Lee and Y. W. Chen, "Photocatalytic reduction of carbon dioxide with water on $InVO_4$ with NiO cocatalysts", Journal of CO₂ Utilization. vol. 10, (2015), pp. 1–6.

24. Z. Y. Wang, H. C. Chou, J. C. S. Wu, D. P. Tsai and G. Mul, CO₂ photo reduction using NiO/InTaO4 in optical-fiber reactor for renewable energy", Applied Catalysis A:General. vol. 380, no. 1-2, (2010), pp. 172–177.

25. Y. F. Li, W. P. Zhang, X. Shen, P. F. Peng, L.B. Xiong and Y. Yu, "Octahedral Cu₂O modified TiO₂ nanotube arrays for efficient photocatalytic reduction of CO₂", Chinese Journal of Catalysis. vol. 36, no. 12, (**2015**), pp. 2229-2236.

26. M. Park, B. S. Kwak, S. W. Jo and M. Kang, "Effective CH₄ production from CO₂ photo reduction using TiO₂/xmol% Cu-TiO₂ double-layered films", Energy Convers. Management. vol. 103, no. 6, (2015), pp. 431-438.

27. S. M. Park, A. Razzaq, Y. H. Park, S. Sorcar, Y. Park, C. A. Grimes and S. I. In, "Hybrid Cu_xO - TiO_2 heterostructured composites for photocatalytic CO_2 reduction into methane using solar irradiation: sunlight into fuel", ACS Omega. vol. 1, no. 5, (**2016**), pp. 868-875.

28. T. Y. Xiang, X. Feng, J. S. Chen, Y. W. Wang, X. H. Yin and X. Shao, "Selective photocatalytic reduction of CO₂ to methanol in CuO-loaded NaTaO₃ nanocubes in isopropanol, Beilstein Journal of Nanotechnology. vol. 7, (2016), pp. 776-783.

29. J. Mao, K. Li and T. Peng, "Recent Advances in the Photocatalytic CO₂ Reduction over Semiconductors", Catalysis Sci. & Technology. vol. 3, no. 10, (**2013**), pp. 2481-2498.

30. W. Fan, Q. Zhang, and Y. Wang, "Semiconductor-based Nanocomposites for Photocatalytic H₂ Production and CO₂ Conversion", Physical Chemistry Chem. Physics. vol. 15, no. 8, (2013), pp. 2632-2649.

31. S. M. Lam, J. C. Sin and A. R. Mohamed, "A Review on Photocatalytic Application of g-C₃N₄/semiconductor (CNS) Nanocomposites towards the Erasure of Dyeing Wastewater", Material Science Semicond. Processing. vol. 47, (**2016**), pp. 62-84.

32. X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. A. Antonietti, "Metal-free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light", Nature Materials. vol. 8, no. 1, (2009), pp. 76-80.

33. G. R. Dey, A .D. Belapurkar and K. Kishore, "Photo-catalytic reduction of carbon dioxide to methane using TiO₂ as suspension in water", Journal of Photochemistry and Photobiol. A: Chemistry. vol. 163, no. 3, (**2004**), pp. 503-508.

34. B. S. Kwak, K. Vignesh, N. K. Park, H. J. Ryu, J. I. Baek and M. Kang, Methane formation from photoreduction of CO₂ with water using TiO₂ including Ni ingredient", Fuel. vol. 143, (2015), pp. 570- 576.

35. J. H. Lee, H. Lee and M. Kang, "Remarkable photoconversion of carbon dioxide into methane using Bi-doped TiO₂ nanoparticles prepared by a conventional sol-gel method", Materials Letters. vol. 178 (2016), pp. 316-319.

36. C. Wang, R. L. Thompson, J. Baltrus and C. Matranga, Visible Light Photoreduction of CO₂ Using CdSe/Pt/TiO₂ Heterostructured Catalysts", Journal of Phys. Chemical Letters. vol. 1, no. 1, (2010), pp. 48-53.

37. C. Wang, R. L. Thompson, P. Ohodnicki, J. Baltrus and C. Matranga, "Size-dependent photocatalytic reduction of CO₂ with PbS quantum dot sensitized TiO₂ heterostructured photocatalysts", Journal of Mater. Chemistry. vol. 21, no. 35, (**2011**), pp. 13452-13457.