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Abstract: A five dimensional Kaluza-Klein space-time is considered in the framework of a 

Brans-Dicke (BD) scalar-tensor theory of gravitation when the source for energy-momentum 

tensor is a dark energy in the presence of one dimensional cosmic strings. A power law of the 
scale factor for the BD scalar field is assumed to get a determinate solution of the field 

equations. We discuss the evolution of the accelerated expansion of the universe through 

deceleration and equation of state (EoS) parameters for our model. The physical behavior of 
the model is also discussed.  
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1  Introduction 
  Nowadays it is strongly believed that the universe is experiencing an accelerated 

expansion [1]-[2]. These observations lead to a matter called dark energy (DE) which has 

large negative pressure.There are a lot of DE models and modified gravity models have been 

put forward, among various DE models, we have taken the holographic dark energy (HDE) 
model. The HDE is arising from the holographic principle [3] which links the energy density 

of DE to the cosmic horizon, attempting to examine the nature of DE in the framework of 

quantum gravity. The DE can be explained in terms of cosmological constant, acts like a 

perfect fluid with an equation of state, satisfying the observational data so far. However, this 
involves the problems of fine tuning and cosmic coincidence. Many dynamical models like 

phantom [4], quintessence [5], quintom [6], etc. have been proposed to alleviate these 

problems. 
In this article, among various DE models, we concentrate on the holographic dark 

energy (HDE) model. The HDE is arising from the holographic principle , which links the 

energy density of DE to the cosmic horizon, attempting to examine the nature of DE in the 
framework of quantum gravity. The energy density of HDE is defined as  

 𝜌ℎ = 3𝐶2𝑀𝑝
2𝐿−2                                                        (1) 

 where 𝑀𝑝  is the reduced Planck mass, 𝑀𝑝
2 = (8𝜋𝐺)−1  𝐶2  is a dimensionless model 

parameter, L indicates the infrared (IR) cutoff radius [7,8]. Based on this principle, researches 
on theHDE have attracted so many scientists, and a lot of remarkableworks have been done in 

this field [9]. In order to examine the HDE, one should give a special form of the IR cutoff. 

Until now, there are many choices have been taken as the IR cutoff radius. Among several 
HDE models, Xu et al. [10] have considered generalized holographic and Ricci DE models. In 

their work, the energy densities of DE are given as 𝜌ℎ = 3𝛼𝑀𝑝
2𝐻2𝑔(𝑅/𝐻2)  and 𝜌𝑅 =

3𝛼𝑀𝑝
2𝑅𝑓(𝐻2/𝑅), where 𝑓(𝑥) and 𝑔(𝑦) are functions of the variables 𝑅/𝐻2  and 𝐻2/𝑅 . 

Nowadays, various works show that the HDE model is in fairly good agreement with the 
observational data [11,12].  

In order to explain late time acceleration, two different approaches have been 

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 10 (Oct) - 2022

http://ymerdigital.com

Page No:1037



advocated: one is to construct different dark energy candidates and the other is the 
modification of Einstein’s theory of gravitation. Among the several modifications 

Brans-Dicke [13] and Saez-Ballester [14] scalar–tensor theories are significant.In BD theory a 

scalar field 𝜙, in addition to the metric tensor field 𝑔𝑖𝑗 , has been introduced which has the 

dimension of the inverse of a gravitational constant and Einstein field equations have been 

modified. BD theory plays a vital role in modern cosmological applications [44, 45]. The 

latest inflationary models [15], possible graceful exit problem [16] and chaotic inflation [17] 
are based on BD scalar–tensor theory.  

Higher dimensional cosmology is important because it has physical relevance to the 

early stages of evolution of the Universe before it has undergone compactification transitions. 

Hence several authors (Witten [18]; Applelquist et al. [19]) were attracted to the study of 
higher dimensional cosmology. Also, in the context of Kaluza–Klein and super string theories 

higher dimensions have recently acquired much significance. Several investigations have been 

made in higher dimensional cosmology in the framework of different scalar– tensor theories 
(Ref. [20-36]). 

Motivated by the above authors, we proposed to investigate five dimensional 

Kaluza-Klein dark energy model is considered in the framework of a BD scalar-tensor theory 
of gravitation when the source for energy-momentum tensor as one dimensional cosmic 

strings. The organiation of paper is as follows: Sec. 2 contains model and their field equations. 

In Sec. 3, we obtain solution of the field equations. Sec. 4 contains some important properties 

of the model. Last section contains some conclusions of the model.   
 

2  Model and field equations 

  We consider the five dimensional Friedmann-Robertson-Walker (FRW) metric in 
the form  

𝑑𝑠2 = 𝑑𝑡2 − 𝐷2(𝑡)(𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) − 𝐸2(𝑡)𝑑𝑚2,                            (2) 

 where D, E are functions of 𝑡 only. 

Several theories have been proposed as alternatives to Einstein's theory. Brans and 
Dicke [13] formulated a scalar-tensor theory of gravitation which is supposed to be the best 

alternative to Einstein's theory. We consider the universe filled with pressure less matter and 

dark energy (DE) fluid. In this case the field equations for the combined scalar and tenor 
fields given by Brans and Dicke are  

𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗 = −

8𝜋

𝜙
(𝑇𝑖𝑗 + 𝑇𝑖𝑗) − 𝑤𝜙−2 (𝜙,𝑖𝜙,𝑗 −

1

2
𝑔𝑖𝑗𝜙,𝑘𝜙,𝑘) − 𝜙−1(𝜙𝑖;𝑗 − 𝑔𝑖𝑗𝜙;𝑘

,𝑘),    (3) 

  

𝜙;𝑘
,𝑘 =

8𝜋

(3+2𝑤)
(𝑇 + 𝑇)                                                             (4) 

 and the energy conservation equation is  

(𝑇𝑖𝑗 + 𝑇𝑖𝑗);𝑗 = 0,                                                                 (5) 

 which is a consequence of field equations (3) and (4). 

Here 𝑅 Ricci scalar, 𝑅𝑖𝑗  is Ricci tensor, 𝑤 is a dimensionless coupling constant. 𝑇𝑖𝑗  

and 𝑇𝑖𝑗  are energy-momentum tensors forcosmic string and RDE, respectively, which are 

defined as  

 𝑇𝑖𝑗 = 𝜌𝑢𝑖𝑢𝑗 + 𝜆𝑥𝑖𝑥𝑗                                                      (6) 

 𝑇𝑖𝑗 = (𝜌𝑑𝑒 + 𝑝𝑑𝑒)𝑢𝑖𝑢𝑗 − 𝑝𝑑𝑒𝑔𝑖𝑗                                          (7) 

 here 𝑝𝑑𝑒 and 𝜌𝑑𝑒 are the pressure and energy density of DE respectively, 𝜔𝑑𝑒 = 𝑝𝑑𝑒/𝜌𝑑𝑒 

is the equation of state (EoS) parameter of DE. 𝜌 is energy density of matter. The energy 

density of DE 𝜌𝑑𝑒 was proposed by Granda and Oliveros [37] as  

 𝜌𝑑𝑒 = 3[𝜁𝐻2 + 𝜂�̇�]                                                     (8) 

 where 𝜁 , 𝜂  are constants and 𝐻  is a Hubble parameter which are must satisfy the 
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restrictions imposed by the current observational data. 𝑀𝑝
2 =

1

8𝜋𝐺
 is the reduced plank mass 

and in Brans-Dicke theory 𝜙 ∝ 𝐺−1. 
By adopting comoving coordinates, the field equations (3) and (4) for the metric (2) 

using energy-momentum tensors (6) and (7) yield the following equations:  

 2
�̈�

𝐷
+

�̇�2

𝐷2 + 2
�̇��̇�

𝐷𝐸
+

�̈�

𝐸
+

𝑤

2

�̇�2

𝜙2 + (2
�̇�

𝐷
+

�̇�

𝐸
)

�̇�

𝜙
+

�̈�

𝜙
= −

8𝜋

𝜙
𝜔𝑑𝑒𝜌𝑑𝑒           (9) 

  

 3
�̇�2

𝐷2 + 3
�̇��̇�

𝐷𝐸
−

𝑤

2

�̇�2

𝜙2 + (3
�̇�

𝐷
+

�̇�

𝐸
)

�̇�

𝜙
=

8𝜋

𝜙
(𝜌𝑑𝑒 + 𝜌)                       (10) 

  

 3
�̈�

𝐷
+ 3

�̇�2

𝐷2 +
𝑤

2

�̇�2

𝜙2 + 3
�̇�

𝐷

�̇�

𝜙
+

�̈�

𝜙
= −

8𝜋

𝜙
(𝜔𝑑𝑒𝜌𝑑𝑒 + 𝜆)                    (11) 

  

 (3
�̇�

𝐷
+

�̇�

𝐸
) �̇� + �̈� =

8𝜋

(3+2𝑤)
(𝜌 − 𝜆 + (1 − 4𝜔𝑑𝑒)𝜌𝑑𝑒)                   (12) 

 and the energy conservation equation (5), leads to  

 �̇�𝑑𝑒 + �̇� + (3
�̇�

𝐷
+

�̇�

𝐸
) (𝜌𝑑𝑒 + 𝜌 − 4𝑝𝑑𝑒) +

�̇�

𝐸
𝜆 = 0                       (13) 

 where overhead dot denotes ordinary differentiation with respect to time 𝑡. 
 

3  Solution of field equations 
  We can observe that the field equations (9)-(12) is a system of four independent 

equations with seven unknown parameters 𝐷,𝐸 𝑝𝑑𝑒 , 𝜌𝑑𝑒 , 𝜌, 𝜆 and 𝜙. Hence in order to 

solve this inconsistent system we need three additional constraints. We consider that shear 

scalar (𝜎) is proportional to the expansion scalar (𝜃). This leads to a relation between the 
metric potentials (Collins et al. [38]) as  

𝐸 = 𝐷𝐾                                                                         (14) 

 In literature it is also common to use a power-law relation between Brans-Dicke scalar field 

𝜙 and average scale factor 𝑎 of the form (Johri and Sudharsan [39]; Johri and Desikan [40]).  

𝜙(𝑡) = 𝜙0[𝑎(𝑡)]𝑙 , 𝑤ℎ𝑒𝑟𝑒  𝜙0 = 0.                                              

(15) 

 where 𝜙0 is a constant and 𝑙 is a power index.  

To get the metric potential, we assume that the string tension 𝜆 = 𝜆0(𝑘 −
1)𝐷𝑘1−1,where 𝜆0 is an arbitrary constant. Clearly, for 𝑘 = 1 the model becomes isotropic 

and also we have 𝜆 = 0. This shows that string does not survive in isotropic model, thus our 

assumption for  is physically valid. Here 𝑘1 =
(𝑘+3)𝑙

3
 

From equ.(9),(11) and (14), we get  

 𝐷(𝑡) =
1

4𝑐2
[(𝑐2𝑡 + 𝑐2𝑐3)2 − 4𝑐1]                                       (16) 

  

 𝐸(𝑡) = {
1

4𝑐2
[(𝑐2𝑡 + 𝑐2𝑐3)2 − 4𝑐1]}

1

𝑘                                    (17) 

                     where 𝑐2 = 16(𝜙0(2(𝑘 + 𝑘1) + 5))−1  and 𝑐1  and 𝑐2  are arbitrary 

constants. 
From equ.(16) and (17), now the metric (2) can be written as  

 𝑑𝑠2 = 𝑑𝑡2 − {
1

4𝑐2
[(𝑐2𝑡 + 𝑐2𝑐3)2 − 4𝑐1]}2(𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) 

 −{
1

4𝑐2
[(𝑐2𝑡 + 𝑐2𝑐3)2 − 4𝑐1]}

2

𝑘𝑑𝑚2                                     (18) 

 From equ.15,(16) and (17), we get the Scalar field as  

 𝜙 = 𝜙0{
1

4𝑐2
[(𝑐2𝑡 + 𝑐2𝑐3)2 − 4𝑐1]}𝑘1                                    (19) 
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 We get the sting tension as  

 𝜆 = 𝜆0(𝑘 − 1){
1

4𝑐2
[(𝑐2𝑡 + 𝑐2𝑐3)2 − 4𝑐1]}𝑘1−1                          (20) 

 

 

4  Some physical properties 
Avarage scale factor  

 𝑎(𝑡) = {
1

4𝑐2
[(𝑐2𝑡 + 𝑐2𝑐3)2 − 4𝑐1]}

𝑘+3

3                                   (21) 

 Hubble parmeter  

 𝐻 =
2𝑐2(𝑘+3)(𝑐2𝑡+𝑐2𝑐3)

3
{[(𝑐2𝑡 + 𝑐2𝑐3)2 − 4𝑐1]}−1                       (22) 

  

 𝑉 = 𝑎4 = {
1

4𝑐2
[(𝑐2𝑡 + 𝑐2𝑐3)2 − 4𝑐1]}

4(𝑘+3)

3                              (23) 

 𝜃 = 4𝐻 = 4
�̇�

𝑎
=

8𝑐2(𝑘+3)(𝑐2𝑡+𝑐2𝑐3)

3
{[(𝑐2𝑡 + 𝑐2𝑐3)2 − 4𝑐1]}−1           (24) 

 Decelaration parameter  

 𝑞 =
𝑑

𝑑𝑡
(

1

𝐻
) − 1 =

3

2(𝑘+3)
(1 + 4(𝑐2𝑡 + 𝑐2𝑐3)−2𝑐1) − 1                  (25) 

 Density of DE  

 𝜌𝑑𝑒 = {
2𝑐2(𝑘+3)

√3((𝑐2𝑡+𝑐2𝑐3)2−4𝑐1)
}2{𝜁(𝑐2𝑡 + 𝑐2𝑐3)2 + 𝜂[𝑐2

(𝑐2𝑡+𝑐2𝑐3)2+4𝑐1

(𝑐2𝑡+𝑐2𝑐3)2−4𝑐1
]2}   (26) 

 Energy density of matter  

 𝜌 =
𝜙0(

1

4𝑐2
((𝑐2𝑡+𝑐2𝑐3)2−4𝑐1))

𝑘1

(3(𝑘+1)+(𝑘+3−𝑤)𝑘1)

8𝜋
{

2𝑐2[𝑐2𝑡+𝑐2𝑐3]

[𝑐2𝑡+𝑐2𝑐3]2−𝑐1
}2 

 −
2𝑐2

2(𝑘+3)

9
(𝑐2𝑡 + 𝑐2𝑐3 − 4𝑐1)−2{2𝜁(𝑘 + 3)(𝑐2𝑡 + 𝑐2𝑐3)2 − 3𝜂𝑐1}      (27) 

 Pressure of matter  

 𝑝𝑑𝑒 =
(3+2𝑤)𝑘1𝜙0(4𝑐2)2−𝑘1

256
{[(𝑐2𝑡 + 𝑐2𝑐3)2 − 4𝑐1]𝑘1−2(𝑐2𝑡 + 𝑐2𝑐3)2} 

 {8𝑐2(3 + 𝑘) + 2(𝑘1 − 1) + (𝑐2𝑡 + 𝑐2𝑐3)−1 − 4(𝑐2𝑡 + 𝑐2𝑐3)−1}        (28) 

  

 𝜔𝑑𝑒 = {
9(3+2𝑤)𝑘1𝜙0(4𝑐2)2−𝑘1((𝑐2𝑡+𝑐2𝑐3)2−4𝑐1)

𝑘1−2
(𝑐2𝑡+𝑐2𝑐3)2

512𝑐2
2(𝑘+3)(𝑐2𝑡+𝑐2𝑐3−4𝑐1)−2(2𝜁(𝑘+3)(𝑐2𝑡+𝑐2𝑐3)2−3𝜂𝑐1)

} 

 {8𝑐2(3 + 𝑘) + 2(𝑘1 − 1) + (𝑐2𝑡 + 𝑐2𝑐3)−1 − 4(𝑐2𝑡 + 𝑐2𝑐3)−1}        (29) 

              

Fig. 1; Plot of scalar field versus cosmic time t for 

 𝜙0 = 0.45, 𝑐1 = 0.9,    𝑙 = −0.35, 𝑘 = 0.98 𝑎𝑛𝑑 𝑐3 = 0.2.   
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Fig. 2: Plot of deceleration parameter versus cosmic time t for 

 𝜙0 = 0.45, 𝑐1 = 0.9, 𝑙 = −0.35, 𝑘 = 0.98 𝑎𝑛𝑑 𝑐3 = 0.2. 
 

                 

Fig. 3: Plot of EoS parameter versus cosmic time t for               

𝜙0 = 0.45, 𝑐1 = 0.9, 𝑙 = −0.35, 𝑘 = 0.98, 𝑐3 = 0.2, 𝑤 = 100000, 𝜁 = 0.01 𝑎𝑛𝑑 𝜉 =
0.001. 

 

In Fig. 1, we have plotted the behaviour for BD scalar field in terms of cosmic time. It can be 

seen from Fig. 1 that the BD scalar field is positive and decreasing function of cosmic time. 

This behavior is quite similar to the scalar field and string models in modified theories of 
gravitation (Aditya and Reddy [30]; Naidu et al. [31]; Raju et al. [32]; Bhaskara Rao et al. 

[23]).   

 
We study the behavior of deceleration parameter in terms of cosmic time in Fig. 2. It exhibits 

a signature change from positive to negative. Hence, our model shows a smooth transition 

from early deceleration era to the present acceleration era of the universe, which agrees with 
the observations from various schemes.  

 

From Fig. 3, we observe that the model starts from aggressive phantom region 𝜔𝑑𝑒 << −1 

crosses phantom divided line (𝜔𝑑𝑒  = -1) and finally attains a constant value at DE-dominated 
era.  

  

5  Conclusions 
 There has been a growing interest in the universe's accelerated expansion 

phenomenon. Many different dynamical DE models and modified/extra-dimensional theories 
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of gravity have been used to explain this occurrence up until this point. The work in this paper 
is devoted to the discussion of a five dimensional Kaluza-Klein space-time is considered in 

the framework of a Brans-Dicke scalar-tensor theory of gravitation when the source for 

energy-momentum tensor is a dark energy in the presence of one dimensional cosmic strings. 

The physical behavior of the obtained model is discussed at early and late times can be 
summarized as follows: 

The volume of the model allows constant value at 𝑡 = 0 and starts increasing with cosmic 

time approaching to very large as 𝑡 → ∞. Thus, the space-time does not show any type of 
initial singularity in our DE model. The expansion scalar and the mean Hubble parameter are 

constant at initial epoch indicating homogeneous expansion of the universe and approaches to 

zero at late times. Since the scalar field decreases with cosmic time the corresponding kinetic 

energy of the model increases with the passage of time (Fig. 1). The behavior of scalar field is 
in agreement with the recent scalar field models in modified theories of gravitation explored 

in the literature (Aditya and Reddy [30]; Naidu et al. [31]; Raju et al. [32]; Bhaskara Rao et al. 

[23]). The EoS parameter of our DE model may be playing an important role to represent the 
dark energy universe since our model starts from aggressive phantom region, crosses the 

phantom devided line and finally approaches a constant value in DE dominated era (Fig. 3). 

Also, our model exhibits a smooth transition from early deceleration to late time acceleration 

(Fig. 2). Hence the results obtained in this work provides consistent behavior with the present 
day observations.  
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