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Abstract 

The population growth and industrial activities nowadays creates a considerable volume 

of rubbish, producing disposal challenges and major environmental hazards. The cement 

industry is a major generator of greenhouse gases like carbon dioxide. The use of waste 

resources, which avoids disposal worries while lowering greenhouse gases emissions into 

the atmosphere. This is a major reason for the advancement of cement-free Geopolymer 

Concrete. Fly ash (FA) and ground granulated blast furnace slag (GGBS) geopolymer 

concrete cubes were treated to various temperatures ranging from 27 °C to 800 °C in a 

75:25 ratio. The mechanical properties were then evaluated. This study demonstrates the 

use of an Artificial Neural Network (ANN) approach to calculate the 28-day compressive 

strength of Geopolymer concrete (GPC) from input materials. 255 test examples from 

previously published studies were used for training, testing, and verifying the ANN model. 

Non-Destructive tests (NDT), Rebound Hammer (RH) and Ultrasonic pulse velocity 

(UPV) were done at the same curing age to confirm the compressive strength estimated by 

the Destructive test. A test project was also built to collect experimental data for testing 

the prediction capacity of the ANN model. According to the study's findings, the ANN 

model applying the "trainlm" learning strategy generated the highest predictive results. 

The unseen set of data had a prediction error of about 3.5MPa on average. 

 

Keywords: compressive strength, elevated temperature, geopolymer concrete, 
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1. Introduction 

The exponential expansion in population is increasing the demand for infrastructure. 

Because of its widespread usage adjacent to water, this need is negatively reflected in 

construction materials, notably Ordinary Portland Cement (OPC)  (Sasi & Sumathy , 

2021). The rise of urbanization and the global population increase have resulted in a 12% 

increase in global cement output in 2019, which is expected to quadruple by 2050. China 

dominates the worldwide cement industry, producing 2.4 billion tonnes in 2018, 

accounting for half of global cement consumption, followed by India, which produced 290 

million tonnes. One tonne of cement may produce 0.6 to 1.0 tonne of CO2 depending on 

the production process used, accounting for 59% of worldwide CO2 emissions  ( 

Gunasekara, Atzarakis, Lokuge, Law, & Setunge, 2021). The environmental impact of 

cement on our ecosystem is quite severe, and it is hazardous to both human health and 

animals. It wastes natural resources and takes more energy to produce, in addition to 

emitting CO2. From an environmental standpoint, it has been determined that OPC 

utilization in the construction area has restrictions ( T, Kannan, M, A, & R, 2021). As a 

result, finding a replacement binder from industrial by-products to complement OPC in 

concrete manufacture is crucial. 

Several specialists have conducted extensive research on energy-efficient and ecofriendly 

construction materials during the last few decades. Geopolymers, as opposed to OPC, are 

produced utilizing aluminosilicate-rich natural materials and industrial wastes as the 

primary raw materials, instead of calcium carbonate calcination (CaCO3). CaCO3 is the 

principal source of carbon dioxide emissions in the production of OPC. As a consequence, 

employing geopolymers can reduce greenhouse-gas emissions by 73% while also reducing 

energy use by 43%. It is possible to conclude that geopolymer binders will be a potentially 

feasible alternative to OPC for concrete manufacturing (Peng, et al., 2020). 

Geopolymers are mostly made from geological materials with high strength and 

specialized characteristics. Geopolymer paste is an acceptable substitute for cement paste. 

Geopolymer binders work similarly to cement binders (bond strength, early high strength, 

thermal resistance, etc.) (Amin , Yara, Khaled, & Bassam, 2022) When compared to 

Portland cement (PC) binders, alkali-activated fly ash (AAF), also known as geopolymer, 

demonstrates substantial mechanical performance and structural stability under high 

temperature exposure. As a result, geopolymers have received the most attention in recent 

years in terms of fire resistance, enabling a wide range of uses such as fire-resistant 

material, heat insulators, and heat energy storage concretes. However, the energy-intensive 

elevated curing technique, as well as the inadequate initial strength, severely restrict the 

development of AAF's in-situ applications. To address these constraints, researchers are 

focusing on blended alkali-activated fly ash/GGBS binders (AAFS), which combine an 

aluminosilicate source (fly ash or metakaolin) with calcium additions. (Y, s, K, H, & 

Quigiang). 

Davidovits coined the phrase "geopolymer concrete" (1978). For GC, many definitions 

have been offered. In 1978, Davidovits postulated that special binders may be incorporated 

by a polymeric reaction of geologically generated silicon and aluminum base material, 

which includes kaolin clay and alkaline liquids. Geopolymers are three-dimensional semi-
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crystalline frameworks formed by mixing [AlO4]
-5 and [Si04]

-4 tetrahedra. There are three 

types of calcium alkali-activated binders: lower content, higher content, and moderate 

content. Alkali activated binders are created by activating alkali materials based on 

aluminum silicates such as GGBFS, fly ash (FA), metakaolin (MK), and others (Kotha & 

A, 2020). 

(Peng, et al., 2020) describes Geopolymer concrete (GPC) as a possible eco-friendly 

building material. Geopolymers are byproducts of polymerization processes that use 

aluminosilicate-rich materials and alkali activators. These raw materials include fly ash 

(FA), ground granulated blast-furnace slag (GGBFS), and metakaolin activators such 

sodium silicate (Na2SiO3, SS), and sodium hydroxide (NaOH, SH). GPC has the advantage 

of cement replacement (which is utilized in conventional concrete) with industrial waste. 

The GPC may utilize industrial byproducts as source materials, perhaps increasing 

sustainability dramatically. The geopolymer binder is an inorganic substance that is made 

by polymerizing aluminosilicate minerals with a strong alkaline solution. The 

polymerization process is divided into two parts. Stage I comprises the interaction of Al 

and Si atom from the raw material with hydroxide ions to produce geopolymer precursor 

ion (monomers). In Stage II, the precursors ion (monomers) polymerizes to form the three-

dimensional geopolymer structure  ( Cao, Pilehvar, Juan , Thanh , & Carmona, 2018). 

Buildings can sustain significant fire damage but protecting people and economic property 

is critical in all circumstances. There remains a chance of fire breaking out, despite 

technical breakthroughs and fire-control efforts. When subjected to high temperatures, 

ordinary concrete loses structural stability due to dehydration and the destruction of 

crystallized hydrates and C-S-H gel. Geopolymeric materials have an inherent fire 

resistance due to their inorganic framework; unlike organic polymers, they are very 

resistant to heat (Kotha & A, 2020). 

In general, concrete has strong fire-resistant properties.  However, because to dehydration 

and destruction of C-S-H and other crystalline hydrates, aggregate types, permeability, and 

other considerations, the strength properties of OPC concrete after a fire between 800 °C 

and 1000 °C is often less than 20%. Because fire produces a substantial difference in 

temperature, the hot layer of the body tends to split and spall out from cooler core layer. 

Geopolymers, on the other hand, have exceptional fire resistance at high temperatures due 

to the presence of extensively dispersed nano-pores in the ceramic-like microstructure, 

which allows physically and chemically linked water to travel and evaporate without 

destroying the aluminosilicate network ( Singh, G, Gupta, & Bhattacharyya, 2015). 

Because concrete structures are composite in nature, assessing the residual strength 

properties of concrete exposed to severe temperatures is a difficult task. Physical 

examination, in-situ laboratory testing, non-destructive, and partially destructive 

experimenting are all phases in assessing concrete after exposure to severe temperatures. 

There is no single assessment method that is superior to others. Multiple approaches may 

be necessary, and results must be carefully monitored at consistent residual strength levels. 

Traditional test methodologies used in normal conditions (e.g., destructive testing on core 

specimens) often do not account for the non-uniformity of concrete after a fire. NDT's key 

aims are to provide an immediate value of in-place strength of concrete to be used in 

structural capacity assessment or to detect internal faults in concrete members to help in 
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later adequacy evaluation. Ultrasonic pulse velocity (UPV) and rebound hammer testing 

are the most often used Non-Destructive Testing (NDT) methods for evaluating concrete 

properties (Schmidt Hammer). Interior cracks, voids, and other faults can also be identified 

using the ultrasonic pulse velocity method. The ultrasonic pulse velocity method was used 

to evaluate the structural integrity of high-temperature-heated concrete. The technique has 

advantages, such as a minimal effect on the building under consideration, a simple 

evaluation procedure, and the ability to analyze changes in the interior structure of 

concrete. Combining multiple NDT methodologies would result in a reasonable 

evaluation. 

In this study, the compressive of Geopolymer concrete is evaluated using an approach 

of Artificial Neural Network (ANN). An artificial neural network is a sort of knowledge 

processing technology that is created by replicating the thinking and operating abilities of 

the human brain. A model of a real brain network is an artificial neural network. As a 

consequence, an artificial system that replicates the functioning of a biological neural 

systems will be built. The artificial neural network was made up of three parts: neurons, 

connection, and weights. 

In this study, a supervised learning model is developed based on the ANN technique was 

developed to assess the compressive of GPC concrete at 28 days old. The structure of the 

ANN model was developed in MATLAB, with nine input parameters and one output. The 

ANN model was built in two stages utilizing different datasets. In the first stage, the ANN 

model was trained and validated using publicly available data from previous works. The 

second stage involved laboratory effort to gather experiment data for evaluating the 

prediction capability of the proposed ANN model. The suggested ANN model's non-

destructive compressive strength test data were compared to the destructive testing of 

specimens' 28-day GPC compressive strength data. 

 

2. Data Preparation 

 

2.1 Experimental data 

A total of fifteen GPC specimens were casted and tested in the lab at CSIR-CBRI, 

Roorkee, to establish the GPC 28-day compression strength. These specimens were 

ambient cured for 28 days prior to compression testing. 

 

2.2 Materials 

 

Fly-ash: The starting material for this experiment was low-calcium (Class F) dry fly 

ash obtained from a nearby power plant. Burning bituminous or anthracite coals 

produces Class F fly ash. It contains less than 3% calcium (CaO) and more than 70% 

silica, alumina, and iron oxide. 

GGBS: GGBS is a wasted product created by quenching molten iron from the furnace 

in steam or water, resulting in a granular and glassy substance that is dried and 

crushed into a fine powder. It contains calcium oxide, silica, alumina, and magnesia.  
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Fine aggregate: For fine aggregate, natural sand with a particle size of less than 4.75 

mm was used. 

Coarse aggregate: The coarse aggregate used are of 12.5mm and 20mm. 

Alkaline solutions: 

Sodium silicate: A local retailer will have silicate in solution form. The chemical 

compound sodium silicate is made up of sodium oxide, silica, and water. Sodium 

silicate is also known as water glass. 

Sodium hydroxides: Sodium hydroxide, sometimes known as caustic soda and with 

the chemical formula NaOH, is a caustic metallic base that is available in pellets, 

flakes, granules, and a 50% saturated solution. To make the requisite concentration 

solution, sodium hydroxide pellets with a purity of 97-98% are acquired from a local store. 

Chemical admixture: Sodium hydroxide, sometimes known as caustic soda, is a high range 

water reducing polycarboxylic ether-based new second generation superplasticizer 

concrete additive developed for concrete that demands high early and final strengths and 

durability.  

 

2.3 Mix proportion 

 

There is no standard mix design available for Geopolymer Concrete. There is relatively 

little research information available for a unique mix design strategy for FA-GGBS-based 

Geopolymer concrete. The rationale for this restricted study is because Geopolymer 

Concrete mix design is time-consuming and dependent on a variety of parameters. The 

mix design in this case was created by trial and error. Some of the components in the mix 

design were established as constants, while the others were adjusted per trail base. Table 

1 illustrates the component mix proportions required. 

 

Table 1. Mix proportion of Geopolymer concrete 

 

Sr. No 

FA 

(Kg/m

3) 

GGBS 

(Kg/m

3) 

NaOH 

(Kg/m

3) 

Na2SiO

3 

(Kg/m3) 

Fine aggregat

e 

(Kg/m3) 

Coarse aggregate 

(Kg/m3) 

20mm 
12.5m

m 

1 310 102 55 135 750 570 570 

 

2.4 Mixing 

 

Initially, fine and coarse aggregates were generated for mixing under saturated dry 

surface conditions. The sodium hydroxide solution with the same molarity was kept 

ready for 24 hours prior to mixing to prepare the alkaline solution. This much time is 

necessary for the full breakdown of sodium hydroxide pellets in water as well as the 

liberation of heat from the created solution since the dissolving process is an 

exothermic reaction. Because the sodium silicate to sodium hydroxide solution ratio 

is 2.5, the produced NaOH solution was mixed with the sodium silicate solution. The 

mixing process was divided into two stages: dry mix and wet mix. The premixed FA 
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and GGBS were thoroughly mixed with fine and coarse aggregates in a saturated 

surface dry condition in the dry mix. The alkaline solution and superplasticizer were 

then gradually added to the dry mix, which was then wet mixed for approximately 4 -

5 minutes. 

 

2.5 Casting and curing of geopolymer concrete 

 

Following the completion of the mixing, the required quantity of specimens for 

evaluating the various characteristics of Geopolymer Concrete were created in the 

corresponding moulds and vibrate for 1 minute on a vibrating table. The cast samples 

were destroyed after one day and left to cure at a temperature of 27±2°C. 150mm 

cubes were evaluated for compressive strength after 28 days of curing, accordingly. 

For each test result, the overall strength is reported as the average of all three 

specimens. 

 

2.6 Exposure specimens to high temperatures 

 

When the specimens attain the appropriate age, they are treated to temperatures of 

200°C, 400°C, 600°C, and 800°C. 

 

2.7 Non-destructive testing 

 

2.7.1 Ultrasonic pulse velocity test 

 

The Proceq Tico ultrasonic instrument is used to examine direct UPV data in concrete. 

This tester measures the propagation time of ultrasonic pulses in a sample with an accuracy 

of 0.1 µs and a range of 0.1-9999.9 µs. The transducers utilized had a diameter of 50mm 

and a maximum resonance frequency of 54kHz. Concrete cube specimens subjected to 

high temperatures with dimensions of 150*150*150 mm are measured. On 28 day-aged 

concrete blocks, ultrasonic pulse velocities were recorded using a pulse meter and an 

accompanying transducer pair in direct transmission mode. For appropriate acoustic 

connection, the concrete surface must be prepped, and grease applied ahead of time. Light 

pressure is required to ensure that the transducers make firm contact with the concrete 

surface. The pulse velocity of the Geopolymer Concrete samples was determined using IS 

13311 (part 1:1992): 2004. 

The ultrasonic pulse velocity measuring principle is to deliver a wave pulse into the 

concrete and time how long it takes for the pulse to travel through the concrete. The pulse 

is generated by a transmitter and detected by a receiver. For each concrete block, direct 

UPV measurements are collected at five separate sites, and the average results are derived. 

Knowing the route length, we can utilize the observed transit time(t) to determine the pulse 

velocity(v) as follows: 

V=D/t 
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2.7.2 Rebound hammer test 

 

The Rebound Hammer (RH) test (also known as the Schmidt hammer Test) is a non-

destructive test invented by Ernst Schmidt, a Swiss Engineer, to determine the elastic 

characteristics or strength of concrete using the rebound principle. This equipment is used 

to assess direct UPV readings in concrete. The RH is largely a surface hardness tester, with 

little or no theoretical relationship between the rebound number (R) and concrete strength. 

Thus, empirical relationships between R and experimental concrete compressive strength 

(CS) are used to determine the CS of the tested concrete. 

he Type N Schmidt test hammer complies with ASTM D5873 and has a simple menu-

guided operation, electronic data processing, automatic correction for testing sites, and test 

data storage. The computerized processing of rebound and impact velocities enhances 

accuracy and repeatability. Battery life is anticipated to be 5000 hits or more between 

recharges. A Type N hammer has an impact energy of 2.207Nm. In this investigation, the 

Rebound Hammer test was done in line with IS13311 (part 2: 1992): 2004. 

Before testing, the Schmidt hammer should be calibrated using the calibration chart that 

comes with it. During testing, the hammer measures the rebound of a spring-loaded mass 

(called R) as it strikes the surface of a testing sample. The energy released by the test 

hammer when it strikes the concrete surface is well defined. The rebound of the hammer 

is determined by the hardness of the material. RH measurements are made at six distinct 

points for each concrete cube, and the average values are determined. The conversion chart 

and the R are used to calculate the CS. 

 

3. Artificial Neural Network Approach 

 

In engineering, science, meteorology, economics, adaptive control, and robotics, the ANN 

is a common ML technique. Algorithms are traditionally built using fixed equation-based 

computations. As a result, when the quantity of input variables fluctuates often, they 

require a long time to calibrate. The equation's input and coefficient details must always 

be updated. To make things simpler, machine learning approaches were used. A supervised 

ML technique, such as ANN, does not have an exact equation, but it does necessitate a 

sufficient number of input and output variables. ANN can learn, recall, and generalize 

from the dependent and independent variables of a data set, and it can be re-trained with 

new data on a continuous basis. 

Many studies have been completed using ANN to estimate the compression strength of 

concrete, and researchers are adopting this ML method to predict the desired outcome in 

other engineering fields. ANNs were developed to mimic the human brain. Because of its 

resemblance to the human brain, even the most basic and insignificant ANN possesses 

exceptional abilities in knowledge and information processing. As a result, an ANN might 

prove valuable in engineering applications. 

Backward error propagation, sometimes known as backpropagation, is the most common 

training strategy for supervised ANN systems. This approach consists of two reversible 

phases, forward and backward. In the first stage, an arbitrary weight value is applied to 
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each connection in the whole network to establish the first link between input and output. 

During the second or backward phase, the difference (error) between the true and intended 

outputs is calculated and returned to the network. The connection weight is changed during 

these iterative methods to decrease input and output error. Despite the fact that it requires 

greater memory than other algorithms, Levenberg-Marquardt backpropagation is typically 

the fastest available backpropagation algorithm and is strongly recommended as a first-

choice supervised approach. 

 

3.1 Model Assessment 

 

The performance of the ANN model was assessed using two criteria: coefficient of 

determination (R2) and Mean Squared Error (MSE). 

 

3.2 Model Development 

 

Temperature, fly ash, GGBS, fine aggregate, coarse aggregate, SH, SS, SH/SS ratio, and 

molarity data were all examined as input variables. For each of these input components, 

the 28-day compressive strength of concrete was obtained from existing literature. The 

number of input variables in the Artificial neural network model was chosen as nine, and 

the number of output variables was chosen as one, which means that 70%, or 179 

specimens, were assigned to the training stage, 15%, or 38 specimens, were assigned to 

the validation (check) stage, and 15%, or 38 specimens, were assigned to the test stage out 

of the total selected number of 255 specimens. 

Several training algorithms were evaluated, and the Levenberg Marquardt (LM) method 

was chosen as the best of the bunch. The prediction accuracy of the ANN model was 

evaluated using an experimental dataset of 15 data samples. 

Table 2. Details about the chosen ANN model 

Parameter Information 

# Neurons in the input layer 9 

# Neurons in hidden layer 11 

# Neurons in the output layer 1 

Training method backpropagation 

Learning algorithm trainlm 

Activation function sigmoid 
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(a) Training (b) Testing 

Fig. 1 Training and Testing state for an selected ANN model 

 

  

(a) Validation (b) Overall 

Fig. 2 Validation and Overall performance for an selected ANN model 

 

4. Results and Discussion 

 

4.1. Model Performance 

 

The suggested ANN model, as previously indicated, was trained and validated using data 

from previously published research. Two indices were employed to assess the performance 

of the ANN model: R2 and MSE. 

Regression charts are another technique to visualize the ANN model's performance 

outcomes. The suggested ANN model's performance results for datasets are presented in 

Figure. 1 and 2. In these graphs, the horizontal axis indicates the actual value, while the 

vertical axis displays the predicted values generated by the recommended ANN model. 
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The diagonal samples show the model's ideal forecast. Figure 1 depicts the relationship 

among experimental outcomes (target values) and anticipated values (output values) 

during the training and validation procedures. R2 is a statistical measure used to determine 

how near the data are to the fitted regression line. The model delivers good results in terms 

of R values in all figures. 

 

4.2. Error Evaluation 

 

Figure 3 depicts an error histogram of the proposed ANN model's performance errors 

divided into 20 bins (columns). The error was the difference between the ANN model's 

predicted and actual values. In this image, the vertical axis represents the number of 

samples from a dataset, while the horizontal axis represents the inaccuracy associated with 

the bins. The zero-line displays the zero inaccuracy of the horizontal axis. As can be seen, 

the majority of samples had errors ranging from -6.647 MPa to 10.76 MPa. The negative 

errors indicated that the anticipated value of the ANN model was smaller than the 

experimental value. 

 

4.3. Application of Artificial Neural Network for Experimental Data 

 

The compressive strength of the ANN model was then compared with the experimental 

compression strength obtained through destructive testing. The table displays the 

performance results of the model for the experimental data set. As demonstrated in Table 

3, the ANN model performed admirably on the experimental dataset, with an average error 

of 3.5 MPa. It should be noted that the experiment dataset for the proposed ANN model 

was previously unknown. The ANN model could determine the compressive strength of 

GPC in a wide range from 22 MPa to 57 MPa with an estimated error of 20%. That is, the 

ANN model has the capability of generalizing the non - linear relationship between inputs 

and outputs. 

 

 

Fig. 3 Error assessment for the selected ANN model 
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Table 3. Performance results for the proposed ANN model 

 

Experimental 

MPa 

Predicted 

MPa 
Error  Error%  

56.040 59.559 3.519 6.280 

50.400 41.192 9.208 18.270 

53.330 43.730 9.600 18.001 

60.490 63.371 2.881 4.763 

79.020 76.258 2.762 3.496 

53.470 55.848 2.378 4.447 

49.330 48.706 0.624 1.265 

52.760 52.326 0.434 0.823 

47.330 47.358 0.028 0.059 

35.690 32.449 3.241 9.082 

31.260 31.168 0.092 0.294 

30.440 30.529 0.089 0.294 

25.420 19.613 5.807 22.844 

20.180 20.165 0.015 0.072 

22.710 22.700 0.010 0.042 

 

5. Conclusions 

 

The ANN technique was employed in this study to determine the compression strength of 

GPC at 28 days old. In the first stage, the ANN model was created using available data. In 

the second stage, the model's prediction capability was validated using experimental data. 

According to the results, the ANN model could predict a wide range of output for unknown 

experimental data with a 20% inaccuracy. Furthermore, the "trainlm" learning approach 

yielded the best results for the proposed ANN model. Finally, it was established that the 

ANN model might be used as an alternative method for reliably forecasting GPC 

compression strength. 

Computational tests such as the mean squared error (MSE) and correlation coefficient (R) 

were used to establish the model's accuracy. In regression analysis, the linear equations 

were well matched to the experimental data obtained from preceding literatures and Non-

Destructive test results. The coefficient (R2) value ranged from 0.89 to 0.99. For training, 

validation, and testing, the resulting R2 value is near to one, indicating optimal fit. 

According to the study's findings, geopolymer concrete manufacture should be encouraged 

in order to lessen the impact of global warming by successfully employing industrial 

byproducts and generating cement-free concrete. 

The results of this work might help in the creation of a reliable soft computing tool for 

forecasting the compressive strength of concrete including blast-furnace slag and fly ash 

in a timely and precise way (supplementary materials). Once such a tool is carefully built, 

the prediction process can reduce the time and cost of experimental experiments. 
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