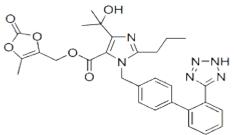
RP-HPLC Method Development and Validation for the Simultaneous Estimation of Olmesartan and Clinidipine in Bulk and Pharmaceutical Dosage Form

Pavan Kumar. V^{*1}, G. Sowmya², A. Darshini³, A. Bhargavi⁴, P. Divya⁵, S. Charitha⁶, G. Sri Chandana⁷

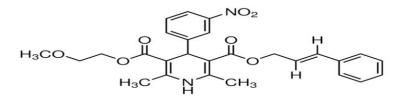
^{1,2,3,4,5,6,7} Department of Pharmaceutical Analysis, Seven Hills College of Pharmacy (Autonomous), Tirupati-517 561, Andhra Pradesh, India

*Corresponding Author Name: Pavan Kumar V E-Mail: pavanvarikuti87@gmail.com


ABSTRACT

The main aim of the present work is to develop a rapid, simple, precise, speedy, accurate and validated chromatography method for the estimation of Olmesartan and Clinidipine quantitatively in fixed dosage form. Effective Chromatographic separation was achieved by using Hypersil C₁₈ Column (250 mm X 4.6 mm internal diameter, 5 µm particle size) using mobile phase composed of Methanol, Acetonitrile and Buffer (pH 4.5) in the proportion of 40: 40:20 (v/v) under controlled temperature. The Mobile phase was siphoned using a gradient HPLC system at a flow rate of 1.0 ml/min and quantification was based on peak area measurements at 274 nm. RT (Retention Time) for Olmesartan and Clinidipine was found to be 2.326 min and 4.344 min. The dimensionality of both the drugs found to be linear with a statistic value of 0.999. The acceptance criteria of precision was Relative variance should be less than 2.0% which shows that the method can be performed repeatedly. Reliability of the proposed method was assessed by evaluation of validation parameters like linearity, precision, specificity, accuracy, LOD, LOQ values as per ICH guidelines. The proposed chromatography method has been applied to formulation without additives interference and specific for the estimation of Olmesartan and Clinidipine.

Key Words: Olmesartan, Clinidipine, Validation, Accuracy, Precision


INTRODUCTION

Hypertension or high blood pressure is a chronic condition in which the blood's force against the artery wall is high¹. Olmesartan is in a class of medications called angiotensin II receptor antagonists. It works by blocking the action of certain natural substances that tighten the blood vessels, allowing the blood to flow more smoothly and the heart to pump more efficiently. High blood pressure is a common condition and when not treated, can cause damage to the brain, heart, blood vessels, kidneys and other parts of the body. Damage to these organs may cause heart disease, a heart attack, heart failure, stroke, kidney failure, loss of vision, and other problems. In addition to taking medication, making lifestyle changes will also help to control your blood pressure². These changes include eating a diet that is low in fat and salt, maintaining a healthy weight, exercising at least 30 minutes most days, not smoking, and using alcohol in moderation. The chemical structure of Olmesartan is exhibited in figure 1.

Figure 1: Structure of Olmesartan

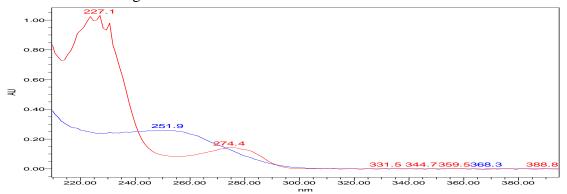
Clinidipine is used in the treatment of Hypertension (high blood pressure), Angina (heartrelated chest pain), Heart attack and Stroke. Clinidipine is a calcium channel blocker. It lowers blood pressure by relaxing blood vessels, which makes the heart more efficient at pumping blood throughout the body³. Clinidipine and Olmesartan is a combination of blood pressure-lowering medicine, and novel calcium channel blockers primarily used to treat hypertension⁴ (high blood pressure). The chemical structure of Clinidipine is exhibited in figure 2.

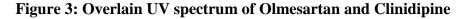
Figure 2: Structure of Clinidipine

The present strategy mainly focused on developing and validating a novel reversed-phase HPLC method for the estimation of Clinidipine and Olmesartan in bulk and pharmaceutical products. After performing extensive literature Survey⁵⁻¹¹ on chromatographic analysis of several dosage forms an attempt was made to develop a new novel, valid, speedy and accurate method for the estimation of Olmesartan and Clinidipine.

MATERIALS AND METHODS

Chemicals and Reagents


Olmesartan and Clinidipine were kindly gifted by Nutech Biosciences Pvt Ltd, Hyderabad having certified purity limits and were used without any chemical treatment. For separation of drugs solvents of HPLC Grade was used in analysis. Nexovas-O Tablets of Macleods Pharmaceuticals Pvt Ltd was utilized for analysis.


Instrument

Liquid Chromatography system used consists of Waters HPLC having Empower Software with 2695 separation module having PDA detector with universal loop injector of injection capacity 20 μ L. The column used was Agilent C₁₈ Column, 5 μ (250× 4.6 mm) at surrounding temperature. Several mobile phases were tested in order to search out the suitable conditions for separating the drugs.

Optimized Chromatographic conditions

The mobile phase having Methanol, Acetonitrile and Phosphate buffer having pH 4.5 in proportion of 40:40:20 by volume was preferred because it ideally resolves the height with Retention Time (RT) of 2.326 min and 4.344 min for respectively. Standard drug were scanned over a large range of wavelength ranging from 200 nm to 390 nm and wavelength was selected at 274 nm because of showing reasonably good response with characteristic UV Spectrum exhibited in Figure 3

Preparation of Buffer

Accurately weighed and transferred 3.464 g of Di Potassium hydrogen Phosphate into 1000 ml clean dry volumetric flask. To this add 500 ml of HPLC water and sonicated for five minutes to dissolve it completely and make up the volume to mark with HPLC water and pH was adjusted to 4.5 by addition of few drops of Orthophosphoric acid.

Preparation of Mobile Phase

Accurately measured 400 milliliter of Methanol (40%), 400 milliliter of Acetonitrile (40%) and 200 milliliter of phosphate buffer (20%) were mixed and kept for sonication in inaudible water tub for 10 minutes and after sonication filter the above solution using 0.45 μ membrane filter under vacuum prior its use and used as diluent

Standard Stock Preparation

Accurately weighed and transferred 10 mg of Clinidipine and 15 mg of Olmesartan working standard into 100 milliliter clean dry volumetric flask and add 70 ml of diluent and degassed for five min to dissolve Olmesartan and Clinidipine standards completely and make volume up to the mark with the identical solvent which gives $100 \mu g/ml$ of Clinidipine and $150 \mu g/ml$ of Olmesartan (Stock solution). From the above solutions 4.0 ml was pipette out into a ten milliliter volumetric flasks and then make up to the mark with diluent. The Chromatogram was exhibited in Figure 4.

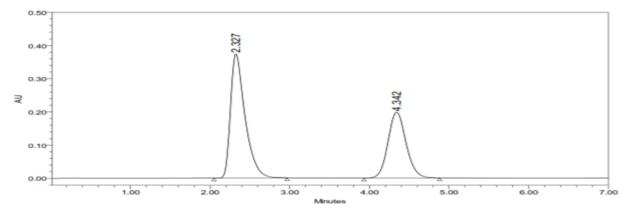
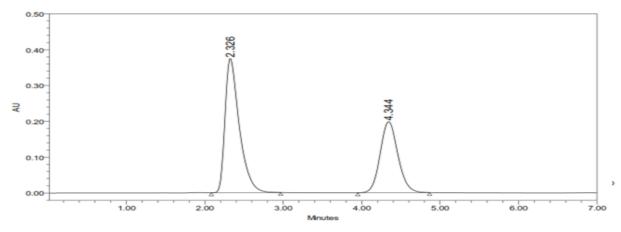



Figure 4: Standard Solution Chromatogram of Olmesartan and Clinidipine

Sample Preparation

A portion of powder equivalent to the weight of 10 mg of Clinidipine and 15 mg of Olmesartan was accurately weighed and transferred into 100 milliliter volumetric flask and diluent of 70 ml was added and degassed for five min to dissolve both the drugs completely and make up to the mark with identical solvent and then solution was filtered through a 0.45 μ membrane filter. From the above filtered solutions 4.0 ml was pipette out into a 10 milliliter volumetric flasks and then make up to the final volume with diluent. In similar manner sample was further diluted to get required concentration The Chromatogram was exhibited in Figure 5.

Figure 5 : Sample solution Chromatogram of Olmesartan and Clinidipine

RESULTS AND DISCUSSION

Preparation of Calibration Curves by HPLC

Serial dilutions of Clinidipine ranging from 18.75 to 112.5 μ g/ml and Olmesartan ranging from 37.5 to 225 μ g/ml were made and their chromatograms were recorded. Height space of drugs was calculated and also the individual activity curve was planned against quantitative of area underneath curve and their respective concentrations and results are reported in Table 1.

Olmesartan		Clinidipine	
Conc (µg/mL)	Peak area	Conc (µg/mL)	Peak area
0	0	0	0
37.5	1097927	18.75	445769
75	2021264	37.5	966834
112.5	2970989	56.25	1414856
150	4008329	75	1913772
187.5	5135671	93.75	2348134
225	6087078	112.5	2776291

Table 1: Linearity Data of Olmesartan and Clinidipine

HPLC Method Validation

The Developed method was validated for Linearity, Accuracy, Specificity, Precision, LOD, LOQ parameters as described in ICH Guidelines.

Linearity and Range

One-dimensionality in a strategy is its ability to induce to take a glance at results and was constructed using the mean areas at their respective concentrations over a given range. Linearity for Clinidipine was within the range of 18.75 to 112.5 μ g/ml and Olmesartan was in the range of 37.5 to 225 μ g/ml respectively. The coefficient of correlation value for calibration plot of Olmesartan and Clinidipine was 0.999 which shows good linearity for the drugs. The Linearity curves were exhibited in figure 6 and 7. Linearity results are tabulated in Table 1

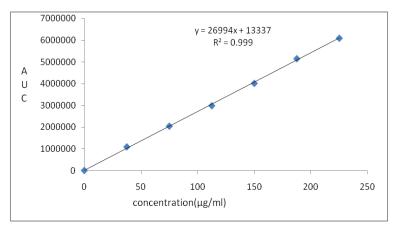



Figure 6: Linearity Curve of Clinidipine

Figure 7: Linearity Curve of Olmesartan

Accuracy

The Certainty of an approach is that the intimacy of the measured worth to actuality worth for the sample. The mean recovery was found to be 99.85% for Olmesartan and 99.42% for Clinidipine respectively. The %RSD of the sample was found to be below 2 and results were tabulated in Table 2 and Table 3

% Level	Amount Spiked (µg/mL)	Amount recovered (µg/mL)	% Recovery	Mean %Recovery
	75	75.09	100.12	
50%	75	74.03	98.70	
75	75	75.46	100.62	
	150	150.30	100.20	
100%	150	150.35	100.23	99.85%
	150	150.52	100.35	
	225	224.68	99.86	
150%	225	223.21	99.21	
	225	223.59	99.38	

 Table 2: Accuracy Report of Olmesartan

Table 3: Accuracy Report of Clinidipine	Table 3:	Accuracy	Report	of	Clinidipine
---	----------	----------	--------	----	-------------

% Level	Amount Spiked (µg/mL)	Amount recovered (µg/mL)	% Recovery	Mean %Recovery
	37.5	36.94	98.51	
50%	37.5	36.98	98.61	
	37.5	36.90	98.40	99.42%
100%	75	74.16	98.87	
100%	75	73.67	98.22	

	75	74.69	99.58
	112.5	113.47	100.86
150%	112.5	113.39	100.79
	112.5	113.53	100.91

Precision

Precision of the strategy was evaluated by performing repeatability in the same day and inter-day studies. The Percentage Relative Standard Deviation of each study was calculated and was found to be less than 2 showing the strategy was precise and the results were shown in Table 4.

S. No	Area of Olmesartan	Area of Clinidipine
1.	4030687	1933598
2.	4013852	1929068
3.	4021562	1934776
4.	4033893	1931245
5.	4034091	1924732
6.	4015898	1925861
Mean	4024982	1929898
S.D	9060.2	4065.6
%RSD	0.2	0.2

Table 4: Precision Report of Olmesartan and Clinidipine

LOD & LOQ

Limit of Detection, Limit of Quantitation values of the method were 0.03 and 0.08 for Clinidipine, 0.22 and 0.71 for Olmesartan respectively. The results obtained are within the limits.

Robustness and Ruggedness

Robustness and Ruggedness studies were carried out by injecting five replicate injections of Olmesartan and Clinidipine on different days and variations was calculated in terms of percentage relative variance which was found to be less than 2% and results were reported in Table 5 and 6.

S.No	Flow Rate	System Suitability Parameters	
5.110	(ml/min)	Plate Count	Tailing Factor
Ι	0.8	4512	1.7
II	1.0	4339	1.6
III	1.2	4212	1.6

Table 5: Result	s of Robustness
-----------------	-----------------

	Mobile phase	Results	
S. No	composition change	Plate Count	Tailing factor
Ι	<5%	4628	1.6
II	*Actual	4546	1.6
III	>5%	4878	1.6

Table 6: Effect of change in mobi	le phase Composition
-----------------------------------	----------------------

Recovery studies

Standard addition method is performed at 50,100,150 % levels and interference of formulation additives was tested. The Recovery was calculated based on amount of Drug found and results are reported in Table 7 and Table 8.

S.no	Standard Area	Sample area	% Assay
1	4030625	4025748	99.82
2	4013874	4027767	99.87
3	4021592	4018426	99.64
4	4033815	4029788	99.92
5	4034095	4025517	99.81
6	4015891	4022579	99.74
Avg	4024982	4024971	99.80
Stdev	9060.2	4012.0	0.099
%RSD	0.3	0.2	0.2

S.no	Standard Area	Sample area	% Assay
1	1933592	1918227	99.20
2	1929075	1915135	99.04
3	1934777	1910180	98.78
4	1931264	1929603	99.79
5	1924751	1919061	99.24
6	1925878	1921673	99.38
Avg	1929890	1918980	99.24
Stdev	4065.6	6525.3	0.3374
%RSD	0.2	0.3	0.3

Table 7: Recovery Data of Olmesartan

CONCLUSION

A systematic and practical approach was utilized to develop an efficient and robust RP-HPLC method for the separation of drugs. Different trials were carried out to determine the optimized chromatographic conditions and initial attempt was performed by utilizing low proportion of organic solvents for the elution of compounds by reducing retention time of the

Table 8: Recovery Data of Clinidipine

compounds. The acceptable results are achieved by the proposed chromatographic conditions. The proposed method is easy, speedy and measurably substantial. During the analysis of drug no interfering peak was found within the chromatogram indicating that there is no excipient interference.

Conflict of Interest

There is no Conflict of Interest among the authors regarding the publication of this paper

ACKNOWLEDGEMENT

The authors are thankful to Seven Hills College of Pharmacy (Autonomous) and Nutech Biosciences, Hyderabad for providing financial assistance under R&D Funds and providing necessary Infrastructure to carry out the research work.

REFERENCES

1. Jan A Staessen, Jiguang Wang, Giuseppe Bianchi, Willem H Birkenhäger. Essential hypertension. The Lancet, Vol. 361(9369), (**2003**), Pp. 1629-1641.

2. https://www.drugbank.ca/drugs/DB00275

3. https://www.drugbank.ca/drugs/DB09232

4. Sumita S, Vikas B, Kamla P. Development and a validation of a novel spectrophotometric analytical method for the determination of olmesartan medoxomil in pharmaceutical formulation. Int J Pharm Pharm sci.; 3(5); **2015**;487-90.

5. N. Sunitha, Subash C Marihal, J.Sai sravanthi, A.Venu, B.V.Narasimha Rao, B.Appa Rao. "Method Development and Validation of RPHPLC Method for the Simultaneous Estimation of Olmesartan and Cilnidipine in Bulk and Formulations"Int. J. of Pharm. Res. & All. Sci. 4(3); **2015**:127-135

6. Reddy BH, Spandana B, Mounika D, Devi S, Dacha A, Prakash KV. Simultaneous estimation of Telmisartan, Chlorthalidone and Cilnidipine by absorbance correction method using UV spectrophotometry. Indo American Journal of Pharmaceutical Sciences. 05(03); **2018**: 1998-2003.

7. Jani RJ, Patel S. Development and validation of Spectrophotometric method for simultaneous estimation of Azilsartan Kamedoxomil and Cilnidipine in synthetic mixture. World Journal of Pharmaceutical Research.; 3(2)**2018**: 86-90.

8. Kachave R, Kale M, Wagh RD. Simultaneous estimation of Cilnidipine and Valsartan by RP-HPLC in tablet formulation. Eurasian Journal of Analytical Chemistry. 11(5); **2016**:245-253.

9. Sangle S, Deshpande P, Shinde N, Tayade V. Development and validation of stability indicating HPTLC method for simultaneous determination of OLM and Chlorthalidone in combined tablet dosage forms. European Journal of Pharmaceutical Medical Research. 4(7); **2017**: 574-581.

10. Aruna G, Bharathi K, Prasad K. Development and validation of bioanalytical HPLC Method for simultaneous estimation of Cilnidipine and Nebivolol in human plasma. International Journal of Pharmaceutical Sciences. 9(10); **2017**: 253-259.

11. ICH Q1A (R2) Guidelines, Stability Testing of New Drug Substances and Products; 2003.