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Abstract

Neurological illnesses are one of the most common medical conditions affecting human races
and societies worldwide. Parkinson's disease is a neurological ailment caused by absence of
dopamine in the human brain and has an impact on the afflicted person's daily routine. Gait freezing
event is the most concerning symptom of Parkinson's disease, and it affects around half of people
with severe Parkinson's. Machine learning methods are used in this study to detect and forecast gait
freezing events. Two hundred thirty seven gait freezing instances from eight patients were collected
from tri-axial accelerometer data set and used to train four machine learning classification models.
After comparing different performance measures of the four classification models it was found that
the Random forest classification model was the most suitable one for predicting gait freezing events
in Parkinson disease as it had the best accuracy, sensitivity ,selectivity and least error among the
four models.

Keywords: Parkinson's disease , Gait freezing , machine learning , tri-axial accelerometer , Random
forest classification model.

1. Introduction

Parkinson’s disease is a worsening neurological disorder marked by uncontrollable shaking ,
stiffness, hypotonia, dyskinesia and gait freezing.[1]. Other mental symptoms like melancholy,
stress, and anxiety may also impact Parkinson patients [2]. It often first manifests in people between
the ages of 50 and 60 [3]. Additionally, it affects males more often than women, while the causes
are unclear [3].

One of the most crippling motor symptoms of Parkinson's disease patients is the gait freezing
event, which is defined as "an abrupt, brief, and transitory incapacity to move the feet forward
despite the desire to walk"[4]. It is mostly seen in patients in the advanced stage of
Parkinson.[5].The gait freezing episode significantly hampers the routine lifestyle of the patients. It
can lead to falls, fractures and frequent hospital admissions.[6].Consequently, this gives rise to
social isolation and dependence on caretakers. This is described in flowchart given below:
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Figure .1 clinical impact of gait freezing event in Parkinson's patients

According to Hausdorff et al. gait freezing event does not completely stop the motion of feet,
there is still shaking of legs, but the patient is unable to advance on walking.[7], Gait freezing
episode is distinguished by a number of sub-categories, including start hesitation, turn hesitation,
hesitation in confined spaces, destination hesitation, and hesitation in an open area [8].As gait
problem is difficult to treat through drugs, in order to encourage the patient to continue walking,
visual [9] and auditory cues can significantly help in reducing it. Predicting the gait freezing event
and sending out audible cues can assist the patient to completely avoid it, which is a step in the right
direction. There are, however, few studies that use machine learning algorithms and a tri-axial
accelerometer to examine and forecast the change from walking to gait freezing. [10].

Our study focuses on forecasting gait freezing events in Parkinson disease patients by using four
machine learning classification models namely K-Nearest Neighbor (KNN),Support Vector
Machine(SVM),Decision tree and Random forest algorithm through tri-axial accelerometer data set
of  Parkinson  patients. We then compare the performance measures like
accuracy,sensitivity,specificity of the above classification models so that we can find the most
suitable model to anticipate gait freezing event before it occurs in Parkinson patients. This will be of
great aid to develop various innovative wearable devices and intelligent real-time health assistants in
future which can provide different types of auditory and visual cues that will alleviate the gait
freezing event and provide relief to Parkinson patients. Furthermore, this model can also be used for
telemonitoring and diagnosis of patients suffering from Parkinson.

2. Methodology

Our approach for developing the various classification models is shown in the flowchart in fig 2
which consists of following steps : data collection , data pre-processing , feature extraction, dividing
the data set into training and testing; then we use various machine learning algorithms to model the
classifier and finally analyze the classifier using various performance measures like accuracy,
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Figure .2 General methodology used in our study

2.1.Data Collection

The Daphnet Freezing of Gait data set, which was obtained from the UCI Machine Learning
Repository, is used for this work [11]. Data of ten Parkinson patients are included in the data set;
however, two individuals were not considered since they had no prior exposure to gait freezing
episodes. Three wearable sensors that collect tri- axial accelerometer signals (sampled at 64 Hz)
from the ankle, knee and hip were used to collect the data. Using the video records that have been
examined by physiotherapists, the walking and gait freezing episode were identified. The dataset was
captured in the lab with a focus on producing plenty of freeze occurrences. Users completed a
variety of activities, such as walking in a straight line, making many turns while walking, and
ultimately, a more realistic activity of routine tasks that included entering various rooms and doing
routine chores including getting a cup of coffee, opening doors, etc. Eight hours and twenty minutes
of data recording was collected in total where average duration of gait freezing episode was found to
be around 8 seconds.

2.2 Data pre-processing
The data comprises of following indexes denoted by:
0 - not a part of our experiment.
1 - experiment when freezing does not occur
2 - freezing occurs

First the data with index “0” is removed as it is not part of our experiment. Due to the lack of
knowledge on the typical length of time between walking and gait freezing events, it is crucial to use
a variety of observation periods to pinpoint the most productive window of time. The main dataset
now includes a five second window between walking and gait freezing episode. Each designated
walking event's last five seconds were substituted by the window. The channel description across
X,Y and Z axes from ankle, knee and hip sensors is plotted in the fig 3 below:
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Figure .3 Channel description

2.3 Feature Extraction

Data from the channels were sequenced in accordance with the set of extracted features in
order to give adequate pattern information for the wvarious classification models taken into
consideration in this research. Our methodology's concept is in line with [12]. Subsequently, the
following seven time-domain and non-linear features were extracted from each channel employing
five second windows:

2.3.1 Mean of the signal: It is usually the signal’s average value denoted by equation (1) given below:

y= =3, (1)

t=1
Here it is obtained by considering the X, Y-axis acceleration of the ankle along with Z-axis acceleration of
the hip

2.3.2 Proportion Above the Mean: It is the number of observations within the window whose values are
more than the average of the window denoted by equation(2) given below:

RMS(velocity) = 2)

Here, the Y-axis acceleration of ankle was used to obtain this feature

2.3.3 Proportion Below the Mean: It is the number of observations within the window whose values are
less than the average of the window . It is denoted by equation(3) given below:

1
P = -
AM n

[yt>§}|, Vt = 1,2m 3)
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Here,it is extracted taking into account the Y-axis acceleration of ankle

2.3.4. RMS Velocity of the signal: It is calculated as the square root of the mean of the square of the
velocity signal ‘y’ in the time domain which is denoted by equation(4) given below:

1
P = —
BM n

{yt <§}|, Vt = 1,27 )

Here,it is extracted taking into account the Y-axis acceleration of ankle

2.3.5 Sum of variations: It is calculated as the sum total of the successive differences of the window
which is denoted by equation (5) given below:

SoC = % dif(y)" Q)

t=1
Here, it is extracted taking into account the X-axis acceleration of the thigh.

2.3.6 Madogram dimension of the signal: It is a spatial function which is used to quantify the
roughness (or smoothness) of time series data taking one as the power index. It is denoted by equation [6]
given below:
1 P
BO = TEy, - v, | P=1 (©)
Here it is obtained by considering Y-axis acceleration of thigh and hip along with Z-axis acceleration of
hip.

2.3.7 Variogram dimension of the signal: It is a spatial function which is used to quantify the roughness
(or smoothness) of time series data taking two as the power index. It is denoted by equation [7] given
below:
1 P
B = TEy, - y,| P=2 (7)
Here, it is extracted taking into account the Y-axis acceleration of the hip.

2.4 Dividing the data into training and testing

In our study we varied the training data set from 20 % to 90% and testing data set from 80% to 10%
so that we can get a comprehensive and holistic idea of the performance measures of each
classification model. Furthermore, it would also help in better comparison of the models.

2.5 Modeling the classifier

In our study we employed various algorithms like K-Nearest Neighbor (KNN), Support Vector
Machine(SVM),Decision Tree(DT),Random Forest(RF) to generate 4 classifiers that can predict gait
freezing episodes.

KNN is a similarity based classifier which first stores the data and then classifies it based on similarity
features without making any assumptions. [13] It’s learning is slow but it is quite simple and easy to
implement.

SVM is a binary classifier that divides the data points into their respective classes by tracing the best
suitable hyperplane . It is done by maximizing the margin(distance between hyperplane and support
vectors) [14]
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In the DT classifier , binary choices are organized into branches that resemble a tree. A feature is then
compared against a threshold at each decision node to select the next node. The sequence ends and the
sample is given a class label when there are no decision nodes left. [15]

RF[16] is based on predictions from several decision trees in place of just one, forecasting the ultimate
class label depending on the majority of the outcomes derived from each decision tree.

2.6 Performance measures for evaluating and comparing each model

In our work we evaluate different performance measures like accuracy, sensitivity and specificity by
generating a confusion matrix of each model as shown in fig 4-7.
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True class
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Figure 4 Confusion chart of KNN model
taking 70% training and 30% testing data
from 23521 samples
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Figure .6 Confusion chart of DT model
taking 70% training and 30% testing data
from 83521 samples
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3. Results

The performance measures namely accuracy, sensitivity and specificity of KNN, SVM,DT,RF
classification models when training data is varied from 20% to 90% is shown in the figures below:
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Figure .8 Accuracy chart of 4 models obtained by varying training data from 20% to 90%

0.995

0.99

0.985

Sensitivity

0.98

0.975

D_ g? 1 1 1 1 1 1
20 30 40 50 G0 70 80 90

Percentage of training samples

Figure .9 Sensitivity chart of 4 models obtained by varying training data from 20% to 90%

VOLUME 21 : ISSUE 8 (Aug) - 2022 Page No:414



YMER || ISSN : 0044-0477 http://ymerdigital.com

0.995

0.99

0.985

0.98

Specificity
o]
w
&

0.97

0.965

0.96 1

D. 955 1 1 1 1 1 1
20 30 40 50 60 70 80 90

Percentage of training samples

Figure .10 Specificity chart of 4 models obtained by varying training data from 20% to 90%

The bar graphs showing error in accuracy, sensitivity and specificity of KNN, SVM,DT,RF
classification models when training data is varied from 20% to 90% is shown in the figures below:
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Figure. 11 Errors in accuracy,sensitivity and Figure. 12 Errors in accuracy,sensitivity and
specificity by taking 20 % traiming data specificity by taking 30 % training data
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Figure. 13 Errors in accuracy,sensitivity and
specificity by taking 40 % traming data
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Figure. 15 Errors in accuracy,sensitivity and
specificity by taking 60 % tramning data
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Figure. 14 Errors in accuracy,sensitivity and
specificity by taking 50 % traming data
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Figure. 16 Errors in accuracy,sensitivity and

specificity by taking 70 % training data
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Figure, 17 Errors in accuracy,sensitivity and Figure, 18 Errors in accuracy,sensitivity and
specificity by taking 80 % traming data specificity by taking 90 % training data

4. Conclusion

In our study we utilized 4 machine learning classification models namely KNN, SVM, DT AND RF
to forecast gait freezing episodes in Parkinson patients by taking into account the tri-axial
accelerometer data set. We then extracted 7 features from the channels of acceleration in X,Y and
Z-axes to train the above classifiers. Furthermore, the training data set was varied from 20% to 90%
and testing data set from 80% to 10% to evaluate their performance measures. We found the RF
classification model was the most suitable one for forecasting gait freezing events in Parkinson
disease as it had the best accuracy, sensitivity,selectivity and the least error among the four models.
The study’s findings can help in developing intelligent real time health assistants and proper diagnosis
of patients suffering from Parkinson’s disease.
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