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ABSTRACT 

This study was aimed at building a robust quantitative structure–activity relationship 

(QSAR) to predict the anti-proliferate activity of 1,3,4-thiadiazole derivatives against the A549 

lung cancer cell lines. The semi-empirical PM7 parametrization approach was used to optimize 

the complete set of 1,3,4-thiadiazole derivatives and various classes of molecular descriptors 

have been calculated. We built models using Fisher score and the best subset selection for 

feature selection, and the final model was developed using the multiple linear regression 

technique, all in accordance with the rigorous Organization for Economic Co-operation and 

Development (OECD) requirements. Furthermore, various internationally agreed severe 

validation parameters were used to validate the model. Overall, our established model for 

quick prediction should be relevant to new, untested, or not yet produced compounds that fall 

within the applicability domain (AD) of the model. The drug-likeness properties of the 10 

compounds with the greatest activity value were also calculated using Lipinski's rule 

properties. 
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1. INTRODUCTION 
Lung cancer is one of the most frequent cancers, with one of the worst fatality rates on 

the planet (1).  It's also the most commonly diagnosed cancer among men in most Northern 

African countries, with 31.9 cases per 100,000 in Morocco (2).  Important progress has been 

made in anticancer therapy, finding safe and effective anticancer drugs remains one of the most 

difficult tasks in drug development. Therefore, scientists are investigating a variety of 

compounds in order to discover novel and effective anticancer agents. 

The current research is centred on thiadiazole derivatives, because they are an appealing 

source of novel and effective anti-cancer therapeutic compounds due to their structural variety 

and biological behaviour. Those substances have a wide range of pharmacological properties, 

including as antiviral, antibacterial, antifungal, antiparasitic, anti-inflammatory, and anticancer 

activities (3, 4). 

The research and development of novel drug candidates is a time-consuming and 

expensive process. Computer-aided drug design techniques have a significant impact in 

shortening the drug discovery development process (5). The quantitative structure-activity 

relationship (QSAR) is a powerful method defined as a mathematical equation that correlates 

the compounds' biological activities to their molecular descriptors, this equation could be used 

to predict, interpret, and assess novel compounds with desired activities (6, 7). A molecular 

descriptor is a numerical representation of a molecule's chemical properties. There are five 

categories of molecular descriptors: geometrical, constitutional, topological, thermodynamic, 

and electronic (8, 9). Some of these descriptors require minimization and optimization of 

molecules. Minimization is the process of refining already-built molecules in order to obtain a 

favorable structure suited for optimization. Geometry optimization entails locating the 

equilibrium or minimal energy of conformation 10. For optimization compounds, density 

functional theory (DFT) is an accurate but time-consuming method. The Semi-empirical 

Hamiltonians method can generate valid molecular parameters for creating QSAR models in a 

more time-efficient manner, especially when there is a lack of experience with descriptor 

selection (11-13). 

Several studies have recently been developed to determine the structural features that 

influence the biological activity of these cancer-fighting compounds (14-18). During this last 

decade for data measured on A549 cancer cell lines, there is no descriptive and predictive 

quantitative structure–activity relationships (QSARs) of 1,3,4-thiadiazole derivatives' anti-

cancer activity.  

 

2. MATERIALS AND METHODS 
2.1. Dataset 

The data set of 1,3,4-thiadiazole derivatives with anti-proliferative activity in A549 

cancer cell lines was assembled from synthesis and experimental determination studies (19). 

The data set contains a total of 33 molecules (Table 1). The activities of these compounds 

expressed by IC50 values used as the dependent variables for QSAR modelling analyses. 

2.2. Structure optimization and descriptor generation 

ChemDraw software (version 16.0) (20) was used to construct the 2D structures of the 

compounds. The semi-empirical PM7 parametrization approach was used using MOPAC2016 

software (21) to optimize the complete set of 1,3,4-thiadiazole derivatives. All the molecules 
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were merged into a single structural text file (sdf format) using Open Babel (version 2.3.2) 

(22). The PaDEL (23), Mordred (24), and ChemoPy (25) programs were used to calculate the 

descriptors based on the 3D geometry representation of molecules. MOPAC output files were 

also used to derive quantum chemical descriptors such as HUMO and LUMO energies. As a 

result, we have over 4000 descriptors, which include 1D, 2D, 3D, and quantum molecular 

descriptors. Intercorrelated descriptors (correlation coefficient cut-off 0.9) and descriptors with 

constant near-constant value were removed during the initial data pre-treatment (variance cut-

off 0.001). After data pre-treatment, 681 descriptors remained for the creation of a 2D-QSAR 

model. 

2.3.  Data splitting 

The Y-based ranking approach was used to divide data set into training and test sets 

(2:1 ratio). These compounds were grouped in ascending order of biological activity first, Then, 

for the test set, every fourth compound was selected. The test set was omitted from the highest 

and lowest active compounds. As a result, for model construction and validation, a training set 

of 22 compounds and a test set of 11 compounds were used. 

2.4. Descriptor selection and model development 

A vital phase in the creation of a QSAR model is the selection of significant and 

meaningful descriptors from a wide pool of descriptors. therefore f-regression from sklearn 

(26) has been used as a feature selection method to search for those descriptors with significant 

explained variance. It is done in two steps: Firstly, the correlation coefficient between each 

descriptor and biological activity is calculated as presented in equation 1. 

𝑅 =
(𝑥𝑖𝑗 − �̅�𝑗)(𝑦𝑖 − �̅�)

𝑆𝑥𝑆𝑦
                        (1) 

Where 𝑥𝑖𝑗 and 𝑦𝑖  are the values of each descriptor and activity, respectively for each 

molecule. �̅�𝑗 the mean value for each descriptor j, and �̅� the mean value for activity. Sx and Sy 

are the standard deviations for each descriptor and activity, respectively. 

Then, the value of F score is computed using equation 2. 

𝐹 =
𝑅2(𝑛 − 2)

1 − 𝑅2
         (2) 

Where 𝑅2 is the square of the correlation coefficient and n is the number of molecules 

in the training set. Finally, the value of F will be converted to p-value.  

In this work, ’selectKBest’ (from sklearn) has been used which allows the selection of 

a number of variables based on p-value, i.e., the variables with the lowest p-value. Using these 

methods, 100 descriptors were chosen to leave only the lucky descriptors explaining biological 

activity, as well as to reduce the time required to complete the next steps. Using these 100 

descriptors, we ran the best subset selection (using MLR BestSubsetSelection 2.1) of DTC lab 

(27) to generate models. Best subset regression is a linear regression analysis technique for 

developing exploratory models. This method examines all potential models with a given set of 

variables and provides the best-fitting models that have one, two, or more variables. We chose 

one best model from the equations given by the best subset selection, based on the highest 

𝑄𝐿𝑂𝑂
2  and 𝑄𝑓1

2 values. We choose the best model for each combination, resulting in a total of 

three models. 
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2.5. Validation of the QSAR models 

The basic goal of all QSAR methods is to create a robust model that can appraise a 

novel molecule empirically, authentically, and meticulously (28). To determine our model's 

robustness concerning reliability and predictivity, different statistical metrics were used, as the 

coefficient of determination (R²), adjusted coefficient of determination (𝑅𝑎𝑑𝑗
2 ), and standard 

error of estimation (SEE). Additional metrics were used to ensure that the predictions were 

correct. For internal validation, leave-one-out cross-validation 𝑄𝐿𝑂𝑂
2 was computed, and for 

external validation, metrics such as 𝑄𝐹1
2  and, 𝑄𝐹2

2  were used. Because compounds with a high 

value of 𝑄𝐿𝑂𝑂
2  do not always suggest that the predicted activity data is close to the observed 

ones, we computed 𝑟𝑚
2  metrics for both the training and test sets (29, 30). The parameters 

suggested by Golbraikh and Tropsha for predicting model acceptability were also calculated 

(31). Furthermore, the Y-randomization technique is used to assess a QSAR model's 

robustness. The randomized model's squared mean correlation 𝑐𝑅𝑝
2 was calculated, as well as 

the degree of variance from the non-random model (R²) (32). 

 
2.6. Applicability domain investigation 

Any QSAR model should have a well-defined applicability domain, according to 

OECD's third principle (33). The broad applicability domain (AD) of a QSAR model is 

typically what determines its reliability (34). AD denotes a theoretical region in chemical space 

defined by the respective model descriptors and activities where reliable predictions can be 

made (35). Thus, only if the compound being predicted falls inside the model's application 

domain may QSAR be used to predict a modeled response. To determine the AD of QSAR 

models, several approaches have been offered, the most frequent of which is the Williams plot 

method (36). Our model's applicability domain was evaluated by the leverage approach 

expressed as Williams plot. The steps to build this graph is done as follows: 

The leverage value for all compounds in the dataset 𝑋 were calculated from the hat 

matrix (H) (Equation 3). 

𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇               (3) 

Where 𝑋 is the two-dimensional 𝑛×𝑘 descriptor matrix of the training set compounds 

that contains n compounds and k descriptors, the transpose of 𝑋 is represented as 𝑋𝑇. The 

leverage value of the 𝑖th compound (ℎ𝑖) was estimated using equation 4.                                         

The cut-off leverage, h*, which is the limit of normal values for 𝑋 outliers, was also 

calculated as presented in equation 4. 

ℎ∗ =
3(𝑘 + 1)

𝑛
              (5) 

For the estimation of the standard residuals, equation 6 was employed.  

      𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑅𝑀𝑆𝐸
 (6) 

Where 𝑅𝑀𝑆𝐸 is the Root Mean Square Error.  

The Williams plot was obtained by plotting the standard residuals against the leverage 

ℎ𝑖 = 𝑥𝑖(𝑋𝑇𝑋)−1𝑥𝑖
𝑇       (𝑖=1…,)              (4) 
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values. 

2.7. Drug-likeness 

The failure of drug candidates in clinical trials is primarily due to undesirable 

pharmacokinetic properties. Since its inception, the idea of drug-likeness has grown in 

importance in the selection of molecules with optimal bioavailability (37). 

The molecular weight (MW), partition coefficient (log P), H-bond acceptors, H-bond 

donors (HBA and HBD), and topological polar surface area (TPSA) of the 10 molecules with 

the highest activity value were predicted using the SwissADME online tool (38). 

At the preclinical stage of drug development, Lipinski's rule of five (5) is one of the 

most common and useful rules. Lipinski's rule of five (5) predicts that if a molecule fails more 

than two of these parameters (MW ≤ 500, HBD ≤ 5, HBA ≤ 10, Log P ≤ 5 and TPSA ≤ 140 

Å2), it will be poorly absorbed in the preclinical stage (39). 

Log S was also used to determine the water solubility of the chosen molecules 

(molecule is insoluble or poorly soluble if log S ≤ −6, moderately soluble if −6 < log S ≤ −4, 

soluble if −4 < log S) (40). 

 

3. RESULTS AND DISCUSSION 
 

3.1. Validation of generated models and analysis of their results 
 

The molecular descriptors obtained for the 1,3,4-Thiadiazole derivatives were pre-

treated, as previously stated. Finally, using the ‘best subset selection' technique, 100 descriptors 

were examined. Using a combination of 4, 5, and 6 descriptors, many models were created 

using the MLR approach. Based on the two parameters 𝑄𝐿𝑂𝑂
2  and 𝑄𝑓1

2 , the best model for each 

combination is selected. These models are represented in Table 2. 

The derived models were validated carefully using different validation metrics. Table 

3 presents an overview of the three models' internal validation results. 

All the three models satisfied the model acceptability standards based on the results of 

their internal validation, with the third model taking priority because it has the greatest 

𝑄𝐿𝑂𝑂
2 value. This last one can explain 76.1% of the variance and predicted 72.5% of the variance 

of biological activity. Meanwhile, the higher values of 𝑟𝑚
2̅̅ ̅ = 0.68 and the lower value of 

∆𝑟𝑚(𝐿𝑂𝑂)
2  (∆𝑟𝑚(𝐿𝑂𝑂)

2 = 0.25) demonstrated that the model was internal robust.  

We also remark that include a descriptor increases the model's quality, but it can lead 

to obtain overfitting. Thus, an external validation must be done to ensure that the proposed 

models do not suffer from the overfitting problem. 

From the results presented in Table 4, all the models gave encouraging results (𝑅2> 0.6 

and 𝑄𝑓1
2 > 0.6). Moreover, these generated models passed all the Golbraikh and Tropsha 

criteria for acceptability, indeed the results of their external validation are within the 

recommended threshold values as shown in Table 5. It can be observed that model 3 is 

statistically better than the other models in the external validation parameters. 

In addition to assess each descriptor's modeling qualification, we computed its Variable 

Inflation Factor (VIF) and significance (p-value). The multicollinearity problem lay between 

the modeling descriptor would be severe if its VIF > 10, slightly with VIF > 5, and inexistence 

if VIF < 5 (41). The VIF values of all descriptors are fewer than 5, as shown in table 6, implying 

that the correlations between these descriptors were poor and that there were no 
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multicollinearities among these six descriptors. The same table indicates also that the 

regression coefficients are significant at the 95% confidence level (p-value < 0.5). 

The correlation matrix was also plotted to further verify the selection of descriptors in 

the final model (Table 7). These six descriptors had poor Pearson's correlation coefficient 

values (< 0.6), indicating that the descriptors in the constructed model were independent of one 

another. 

To see if the modelling work contains a chance correlation, the Y-Randomization test 

was performed. In this technique, the activity column entries are scrambled, and new QSAR 

models are developed using the same set of descriptors as present in the original model. In the 

present case, 50 random trials were run, and a squared mean correlation of the randomized 

model 𝑐𝑅𝑝
2 was estimated. Table 8 demonstrates the robustness of the proposed QSAR model 

and the absence of chance correlation during the modelling process (𝑐𝑅𝑝
2 >0.5). 

Figure 1 presents radar plots comparing observed and predicted values estimated by 

model (3).The level of overlap between blue and brown lines in the radar graphs depicts the 

difference between observed and predicted activities for the training and test sets individually. 

The graphic demonstrates that the real activities and the activities predicted by model 3 

overlaps for most compounds, which confirms that this prediction is appropriate. 

 

3.2. Molecular descriptors and their significance 

Table 9 lists the definitions and categories for the six descriptors that were chosen. 

TDB9v, which is topological distance-based autocorrelation – lag 9/weighted by van 

der Waals volumes, has the biggest contribution with a negative influence on the biological 

activity, as seen in table 9. This descriptor is obtained by summing up the products of certain 

properties of two atoms located at given topological distances. The topological distance 

represents the minimum number of bonds between two atoms. Similarly, spatial 

autocorrelation considers properties on the molecular surface separated by a given Euclidean 

distance (42). 

PNSA-1 is the partial negatively charged molecular surface area. Charged partial 

surface area descriptors encoding characteristics were responsible for polar molecular 

interactions. The molecular depiction used here considers that a molecule has a surface defined 

by the overlap of the hard sphere, as defined by the atoms' van der Waals radii (43). The 

descriptor contributes to the biological activity in a negative way. 

MoRSEU15 and Mor06 are a 3D-MoRSE (3D- molecular representation of structure 

based on electron diffraction) un-weighted descriptors and encode information of structural 

features like mass and number of branching in substituted benzene derivative (44). The positive 

sign in these descriptors' regression coefficients indicates that adding substituents to the 

aromatic ring increases the value of activity. 

Mor04m is a 3D-MoRSE – signal 4/weighted by atomic masses. The negative sign in 

the regression coefficient of this descriptor negatively reflects the role of atomic masses on the 

activity of this derivatives. 

RDFU5 is an RDF (radial distribution function) descriptor. The RDF descriptors are 

based on the distance distribution in the molecule. The radial distribution function of an 

ensemble of n atoms can be interpreted as the probability distribution of finding an atom in a 

spherical volume of radius R (45).  The importance of the descriptor RDFU5, which has a 

negative effect on biological activity, is shown in Table 9. 

 

3.3. Applicability domain 

Figure 2 shows the 1.3.4-Thiadiazole derivatives dataset's Williams plot. in which the 

standardized residuals for each molecule in the dataset were plotted against their leverage 

values to identify possible outliers and standout compounds in the models. As illustrated in 
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Fig. 2 none of the 33 compounds in the model are outside the range of ±3 standard deviation 

units. Moreover, a value of 3 for standardized residual is typically employed as a cut-off value 

for accepting predictions, because data that is normally distributed is covered by points that are 

3 standardized residuals from the mean (46). As shown in this plot, all of the compounds' h 

values are less than the leverage threshold h*. This means that no compound can be classified 

as an outlier in terms of chemical structure. 

 

3.4. Drug-likeness evaluation 

The use of computational tools to identify novel drug candidates reduces the number of 

experimental investigations and increases the success rate. As an initial screening step for oral 

bioavailability, we employed Lipinski's rule of five for drug-likeness. 

Table 10's results indicate that the ten compounds have good results and follow these 

criteria. As a result, it appears that all of the chosen compounds have satisfactory oral medicine 

bioavailability. Furthermore, all of these compounds have a modest water solubility. Because 

the log S value is between 6 and 2, it may help with oral adsorption. 

 

CONCLUSION 
In this study, we have developed an MLR-regression-based QSAR model from 33 

compounds having defined anti-proliferate activity against the A549 lung cancer cell lines to 

investigate the structural requirements or molecular properties essential for the anti-

proliferate activity. 

The most relevant descriptors were chosen using a variety of variable selection 

strategies, and the final model was built using the multiple linear regression technique. The 

model was thoroughly validated using both internal and external validation metrics, with the 

results demonstrating the generated model's reliability and utility (Q2 = 0.751, R2
pred or 

Q2
F1 = 0.812 and Q2

F2 = 0.812). 
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Table 1. SMILES of the 1,3,4-thiadiazole derivatives used in the QSAR study 

Name SMILES IC50 

1 CCC(C)SSc1nnc(SCC(=O)Nc2ccccc2)s1 29.52 

2 CCC(C)SSc1nnc(SCC(=O)Nc2ccccc2Cl)s1 28.49 

3 CCC(C)SSc1nnc(SCC(=O)Nc2cccc(Cl)c2)s1 26.72 

4 CCC(C)SSc1nnc(SCC(=O)Nc2ccc(Cl)cc2)s1 25.9 

5 CCC(C)SSc1nnc(SCC(=O)Nc2cccc([N+](=O)[O-])c2)s1 25.86 

6 CCC(C)SSc1nnc(SCC(=O)Nc2ccc([N+](=O)[O-])cc2)s1 25.47 

7 CCC(C)SSc1nnc(SCC(=O)Nc2ccccc2OC)s1 24.42 

8 CCC(C)SSc1nnc(SCC(=O)Nc2ccc(OC)cc2)s1 23.27 

9a CCC(C)SSc1nnc(SCC(=O)Nc2ccc(F)cc2)s1 22.12 

10 a CCC(C)SSc1nnc(SCC(=O)Nc2ccc(C(F)(F)F)cc2)s1 20.02 

11a CCC(C)SSc1nnc(SCC(=O)Nc2ccc(C)cc2)s1 19.9 

12 a CCCCSSc1nnc(SCC(=O)Nc2ccccc2)s1 17.63 

13 a CCCCSSc1nnc(SCC(=O)Nc2ccccc2Cl)s1 17.29 

14 CCCCSSc1nnc(SCC(=O)Nc2cccc(Cl)c2)s1 12.76 

15 a CCCCSSc1nnc(SCC(=O)Nc2ccc(Cl)cc2)s1 12.65 

16 CCCCSSc1nnc(SCC(=O)Nc2cccc([N+](=O)[O-])c2)s1 12.19 

17 CCCCSSc1nnc(SCC(=O)Nc2ccc([N+](=O)[O-])cc2)s1 9.8 

18 a CCCCSSc1nnc(SCC(=O)Nc2ccccc2OC)s1 9.5 

19 a CCCCSSc1nnc(SCC(=O)Nc2ccc(OC)cc2)s1 9.31 

20 CCCCSSc1nnc(SCC(=O)Nc2ccc(F)cc2)s1 8.71 

21 a CCCCSSc1nnc(SCC(=O)Nc2ccc(C(F)(F)F)cc2)s1 8.71 

22 CCCCSSc1nnc(SCC(=O)Nc2ccc(C)cc2)s1 8.69 

23 a CC(C)CSSc1nnc(SCC(=O)Nc2ccccc2)s1 8.56 

24 CC(C)CSSc1nnc(SCC(=O)Nc2ccccc2Cl)s1 8.51 

25 CC(C)CSSc1nnc(SCC(=O)Nc2cccc(Cl)c2)s1 8.26 

26 CC(C)CSSc1nnc(SCC(=O)Nc2ccc(Cl)cc2)s1 8.17 

27 CC(C)CSSc1nnc(SCC(=O)Nc2cccc([N+](=O)[O-])c2)s1 8.02 

28 CC(C)CSSc1nnc(SCC(=O)Nc2ccc([N+](=O)[O-])cc2)s1 8 

29 a COc1ccccc1NC(=O)CSc1nnc(SSCC(C)C)s1 7.84 

30 COc1ccc(NC(=O)CSc2nnc(SSCC(C)C)s2)cc1 7.71 

31 CC(C)CSSc1nnc(SCC(=O)Nc2ccc(F)cc2)s1 7.7 

32 CC(C)CSSc1nnc(SCC(=O)Nc2ccc(C(F)(F)F)cc2)s1 6.53 

33 Cc1ccc(NC(=O)CSc2nnc(SSCC(C)C)s2)cc1 3.62 

a compound  used in test set 
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 Table 2. Developed MLR models for 1,3,4-thiadiazole derivatives. 

Model  Equation 

1 IC50= -3.313 + 1.029TDB8e  - 11.081RDF130v + 7.071Mor06  - 1.758RDFU5 

2 IC50= 9.625 + 1.285TDB8e - 2.715RDF130s + 8.271Mor06 - 21.561GATSm4 - 2.006RDFU5 

3 
IC50= 79.852 - 0.042TDB9v + 0.061PNSA-1 + 11.889Mor06 - 3.533Mor04m - 1.603RDFU5 + 

17.994MoRSEU15 

 

Table 3. Internal validation results for the three models. 
Parameters Model 1 Model 2 Model 3 

𝑅2 0.802 0.803 0.869 

𝑅𝑎𝑑𝑗
2  0.756 0.741 0.816 

𝑄𝐿𝑂𝑂
2  0.676 0.685 0.751 

Standard Error of Estimate 3.927 4.043 3.406 

F-value (95%) 17.258 13.035 16.560 

𝑟𝑚(𝐿𝑂𝑂)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅  0.594 0.604 0.681 

∆𝑟𝑚(𝐿𝑂𝑂)
2  0.065 0.051 0.025 

 

Table 4. External validation results for the three models. 
Parameters Model 1 Model 2 Model 3 

𝑅2 0.602 0.675 0.819 

𝑄𝑓1
2  0.601 0.668 0.812 

𝑄𝑓2
2  0.601 0.668 0.812 

RMSEP 4.941 4.506 3.388 

 

 

Table 5. Golbraikh and Tropsha acceptable model criteria for the three models 

Parameter Threshold value Model 1 Model 2 Model 3 

𝑄𝐿𝑂𝑂
2  𝑄𝐿𝑂𝑂

2 > 0.5 0.676 0.685 0.751 

𝑅𝑡𝑒𝑠𝑡
2  𝑅𝑡𝑒𝑠𝑡

2  > 0.6 0.602 0.675 0.819 

| r20 –𝑟′0
2  | |r20 – 𝑟′0

2| < 0.3 0.239 0.178 0.070 

k 

[0.85<k<1.15 and ((𝑟2- 𝑟0
2)/ 𝑟2)<0.1] 

OR 

[0.85<k'<1.15 and ((𝑟2-𝑟′0
2)/ 𝑟2)<0.1] 

1.013 1.033 0.989 

k’ 0.899 0.897 0.969 

(𝑟2  – 𝑟0
2)/ 𝑟2 0.000 0.004 0.007 

(𝑟2  – 𝑟′0
2)/ 𝑟2 0.398 0.268 0.093 

 

Table 6. The descriptors name and their statistical parameters  
Coefficient Std. error t test sig VIF 

Intercept 79.852 21.269 3.754 0.002 
 

TDB9v -0.042 0.011 -3.656 0.002 3.884 

PNSA-1 0.061 0.022 2.793 0.014 1.337 

Mor06 11.889 2.251 5.281 0.000 1.827 

Mor04m -3.534 0.802 -4.406 0.001 2.013 

RDFU5 -1.604 0.519 -3.088 0.007 1.595 

MoRSEU15 17.994 4.209 4.275 0.001 1.461 
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Table 7. Correlation matrix among descriptors and between each descriptor and 

activity value  
TDB9v PNSA-1 Mor06 Mor04m RDFU5 MoRSEU15 ACTIVITY 

TDB9v 1 0.385 0.538 -0.571 -0.501 0.501 0.560 

PNSA-1  1 0.217 -0.046 -0.368 0.192 0.441 

Mor06   1 0.007 -0.132 0.340 0.579 

Mor04m    1 0.368 -0.252 -0.465 

RDFU5     1 -0.039 -0.461 

MoRSEU15      1 0.593 

 

Table 8. Random Models Parameters 
Average R 0.434 

Average R² 0.203 

Average 𝑄𝐿𝑂𝑂
2  -0.559 

𝑐𝑅𝑝
2 0.731 

 

Table 1. Contribution of the model descriptors 

  

Table 2. Prediction of molecular properties of descriptors for the 10 compounds. 
Compou

nd 
Lipsinki's parameters 

number of 

violations 
solubility 

Molecule MW HBA HBD Log P TPSA  Log S Class 

M26 406.01 3 1 2.80 159.02 1 -5.24 
Moderately 

soluble 

M21 439.56 6 1 3.17 159.02 1 -5.38 
Moderately 

soluble 

M25 406.01 3 1 2.80 159.02 1 -5.24 
Moderately 

soluble 

M20 389.55 4 1 2.67 159.02 1 -4.68 
Moderately 

soluble 

M10 439.56 6 1 3.17 159.02 1 -5.49 
Moderately 

soluble 

M28 416.56 5 1 1.31 204.84 1 -4.70 
Moderately 

soluble 

M24 406.01 3 1 2.80 159.02 1 -5.24 
Moderately 

soluble 

M15 406.01 3 1 2.80 159.02 1 -5.12 
Moderately 

soluble 

M17 416.56 5 1 1.31 204.84 1 -4.59 
Moderately 

soluble 

M32 439.56 6 1 3.17 159.02 1 -5.50 
Moderately 

soluble 

Threshol

d 

MW ≤ 

500 

HBA ≤ 

10 

HBD ≤ 

5 

Log P ≤ 

5 

TPSA ≤ 

140 
N.viol≤1 

Log S ≥ 

-6 

Descriptor Degree of contribution Percentage of contribution 

TDB9v -0.674 21.9 

PNSA-1 0.302 9.8 

Mor06 0.667 21.7 

Mor04m -0.585 19.0 

RDFU5 -0.365 11.9 

MoRSEU15 0.483 15.7 
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 Fig. (1). A radar plot depicting the observed (Obs) and predicted (Pred) behavior of the 

train set and the test set using the model (3). 

 

 
Fig. (1). William’s Plot for 1.3.4-thiadiazole derivatives 
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