ON ROUGH BI-SEMI GENERALIZED LOCALLY CLOSED SETS IN ROUGH SET BITOPOLOGICAL SPACES

J. SHEEBA PRIYADHARSHINI^[1], K. BHUVANESWARI^[2]

^[1]Research Scholar, Department of Mathematics, Mother Teresa women's University, Kodaikanal. ^[2]Associate Professor, Department of Mathematics, Mother Teresa women's University, Kodaikanal.

ABSTRACT

The purpose of this paper is to introduce a new class of sets called Rough bi-semi locally closed sets and Rough bi-semi generalized locally closed sets in Rough bitopological space and studied some of its properties.

Keywords: Rough bitopology, Rough bi-closed Sets, Rough bi-sg closed Sets, Rough bi-SLC Sets, Rough bi-SLC* Sets,, Rough bi-SGLC Sets, Rough bi-SGLC* set, Rough bi-SGLC** set.

AMS Subject Classification (2010): 54A05

1. INTRODUCTION

Bourbaki [7] in 1966, defined a subset S of a space (X, τ) to be locally closed if it is the intersection of an open set and a closed set. Balachandran et.al, [2] introduced the concept of semi locally closed set and semi generalized locally closed set in Topology. The notion of Rough set theory was introduced by Pawlak [10] which was defined in terms of approximations and boundary region of a subset of an universe using an equivalence relation on it. In 2017 Bhuvaneswari et.al, [5] introduced and studied Nano locally closed sets and Nano generalized locally closed sets in Nano topological spaces. In 1963 Kelly [9] initiated the systematic study of bitopological spaces. Baby Bhattacharya et al., [1] introduced the concept of $(1,2)^*$ - locally closed sets in bitopological space. Bhuvaneswari et.al, [6] introduced and studied Rough bitopological space. In this paper a new class of sets called Rough bi-semi locally closed sets and Rough bi-semi generalized locally closed sets are introduced and studied some of its properties.

2. PRELIMINARIES

Definition 2.1[10]: A subset A of a topological space (X, τ) is called a **semi open** set if $A \subseteq cl[Int(A)]$. The complement of a semi open set of a space X is called **semi closed** set in X.

Definition 2.2[3]: A subset A of (X, τ) is called a **semi generalized closed set** (briefly sgclosed) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in X.

Definition 2.3[2]: A subset S of a space (X, τ) , is called **semi locally closed** if $S = U \cap F$, where U is semi open and F is semi closed in (X, τ) .

Definition 2.4[2]: A subset S of (X, τ) , is called **semi generalized locally closed set** (briefly sglc) if $S = G \cap F$, where G is sg-open in (X, τ) and F is sg-closed in (X, τ) . Every sg-closed set (resp. sg-open set) is sglc.

Definition 2.5[8]: For a subset S of (X, τ) , $S \in SGLC^*(X, \tau)$ if there exist a sg-open set G and a closed set F of (X, τ) , respectively, such that $S = G \cap F$.

Definition 2.6[8]: For a subset S of (X, τ) , $S \in SGLC^{**}(X, \tau)$ if there exist a open set G and a *sg*-closed set F of (X, τ) , respectively, such that $S = G \cap F$.

Definition 2.7[11]: Let U be the universe, R be an equivalence relation on U and the Rough topology $\tau_R(X) = \{U, \phi, \underline{R}(X), \overline{R}(X), BN_R(X)\}$, where $X \subseteq U$ which satisfies the following axioms:

- (i). U and $\Phi \in \tau_R(X)$.
- (ii). The union of the elements of any sub-collection of $\tau_R(X)$ is in $\tau_R(X)$.
- (iii). The intersection of the elements of any finite sub collection of $\tau_R(X)$ is in $\tau_R(X)$.

That is, $\tau_R(X)$ is a topology on U called the **Nano/Rough Topology** on U with respect to X. ($U, \tau_R(X)$) is called the Rough topological space. The elements of $\tau_R(X)$ are known as Rough open sets in U.

Definition 2.8[11]: Let $(U, \tau_R(X))$ be a nano topological space and $A \subseteq U$. Then A is said to be

- Nano semi open if $A \subseteq Ncl[NInt(A)]$
- Nano semi closed if $NInt[Ncl(A)] \subseteq A$

Definition 2.9[11]: A subset A of $(U, \tau_R(X))$ is called **Nano semi generalized closed set** (*Nsg*-closed) if $Nscl(A) \subseteq V$ whenever $A \subseteq V$ and V is Nano semi open in $(U, \tau_R(X))$.

Definition 2.10[6]: Let U be the universe, R be an equivalence relation on U and $\tau_{R_{1,2}}(X) = \bigcup \{\tau_{R_1}(X), \tau_{R_2}(X)\}$ where $\tau_R(X) = \{U, \phi, L_R(X), U_R(X), B_R(X)\}$ and $X \subseteq U$. Then $(U, \tau_{R_{1,2}}(X))$ is said to be **Rough/Nano bitopological space**. Elements of the Rough bitopology are known as Rough (1, 2)* open sets in U. Elements of $[\tau_{R_{1,2}}(X)]^c$ are called Rough (1, 2)* closed sets in $\tau_{R_{1,2}}(X)$.

Definition 2.11[6]: A subset A of $(U, \tau_{R_1}(X))$ is called **nano (1, 2)* semi open** set if

 $A \subseteq N\tau_{1,2}cl[N\tau_{1,2}Int(A)]$. The complement of a nano $(1, 2)^*$ semi open set of a space U is called **nano** $(1, 2)^*$ semi closed set in $(U, \tau_{R_{1,2}}(X))$.

Definition 2.12[6]: A subset A of $(U, \tau_{R_{1,2}}(X))$ is called **Nano (1, 2)* semi generalized** closed set (briefly N (1, 2)*sg-closed) if $N\tau_{1,2}scl(A)) \subseteq V$ whenever $A \subseteq V$ and V is nano (1, 2)* semi open in $(U, \tau_{R_{1,2}}(X))$.

Remark 2.13[6]: Let A be any subset of $(U, \tau_{R_{\mu}}(X))$

- (*i*). Let A be an $R_{bi} sg$ closed set and suppose that F is a R_{bi} -closed set. Then $A \cap F$ is an $R_{bi} sg$ closed set.
- (*ii*). Let A and B be subsets of a Rough bitopological space .Then A is $R_{bi} sg$ open if it is R_{bi} -open and $A \cap B$ is $R_{bi} sg$ open if both A and B are $R_{bi} sg$ open.
- (*iii*). A is $R_{bi} sg$ closed in $(U, \tau_{R_{bi}}(X))$ if and only if $A = R_{bi}sgcl(A)$
- (*iv*). $R_{bi}sgcl(A)$ is $R_{bi} sg$ closed in $(U, \tau_{R_{bi}}(X))$
- (v). $x \in R_{bi} sgcl(A)$ if and only if $A \cap U \neq \phi$ for every $R_{bi} sg$ open set U containing x.

3. ROUGH BI-GENERALIZED LOCALLY CLOSED SETS

Definition 3.1: A subset A of $(U, \tau_{R_{bi}}(X))$, is called **Rough bi- semi locally closed** (briefly R_{bi} - slc) if $A = G \cap F$, where G is R_{bi} -semi open and F is R_{bi} -semi closed in $(U, \tau_{R_{bi}}(X))$. The collection of all R_{bi} - semi locally closed sets of $(U, \tau_{R_{bi}}(X))$ will be denoted by $R_{bi}SLC(U, \tau_{R_{bi}}(X))$.

Definition 3.2: A subset A of $(U, \tau_{R_{bi}}(X))$, is called **Rough bi- semi locally* closed** (briefly R_{bi} -slc*) set, if there exist a R_{bi} -semi open set G and a R_{bi} - closed set F of $(U, \tau_{R_{bi}}(X))$, respectively such that $A = G \cap F$. The collection of all R_{bi} - semi locally closed sets of $(U, \tau_{R_{bi}}(X))$ will be denoted by $R_{bi}SLC^*(U, \tau_{R_{bi}}(X))$.

Remark 3.3:

- (*i*). Every R_{bi} -semi open (resp. R_{bi} -semi closed) subset of U is R_{bi} -semi locally closed.
- (*ii*). The complement of a R_{bi} -semi locally closed set need not be R_{bi} -semi locally closed.
- (*iii*). Every R_{bi} -slc* set is R_{bi} -slc set
- (*iv*). If every subset of $(U, \mathcal{T}_{R_{bi}}(X))$ is R_{bi} -locally closed, then it is R_{bi} -slc*

Theorem 3.4: For a subset A of $(U, \tau_{R_{hi}}(X))$, the following are equivalent

(*i*).
$$A \in R_{bi}SLC(U, \tau_{R_{bi}}(X))$$

- (*ii*). $A = P \cap (R_{bi}scl(A))$ for some R_{bi} -semi open set P
- (*iii*). $R_{bi}scl(A) A$ is R_{bi} -semi closed
- (*iv*). $A \bigcup (U R_{bi} scl(A))$ is R_{bi} -semi open

Proof: (*i*) \Rightarrow (*ii*) Let $A \in R_{bi}SLC(U, \tau_{R_{bi}}(X))$. Then $A = P \cap F$ where P is R_{bi} -semi open and F is R_{bi} -semi closed. Since $A \subseteq P$ and $A \subseteq R_{bi}scl(A)$, $A \subseteq P \cap R_{bi}scl(A)$. Conversely, since $A \subseteq F$, $A \subseteq R_{bi}scl(A) \subseteq F$, $A = P \cap F \supseteq P \cap R_{bi}scl(A)$. That is $P \cap R_{bi}scl(A) \subseteq A$. Therefore $A = P \cap (R_{bi}scl(A))$

 $(ii) \Rightarrow (i)$ Since P is R_{bi} -semi open and $R_{bi}scl(A)$ is R_{bi} -semi closed, $P \cap R_{bi}scl(A) \in R_{bi}SLC(U, \tau_{R_{bi}}(X))$ by Definition 3.1.

(*ii*) \Rightarrow (*iii*) $A = P \cap (R_{bi}scl(A))$ implies that $R_{bi}scl(A) - A = R_{bi}scl(A) - (U - P) = R_{bi}scl(A) - P^{C}$ which is R_{bi} -semi closed, since P^{C} is R_{bi} -semi closed.

 $(iii) \Rightarrow (ii)$ Let $P = (R_{bi}scl(A) - A)^{C}$. Then by assumption, P is R_{bi} -semi open in $(U, \tau_{R_{bi}}(X))$ and $A = P \cap (R_{bi}scl(A))$.

(*iii*) \Rightarrow (*iv*) $A \bigcup (U - R_{bi}scl(A)) = A \bigcup (R_{bi}scl(A))^{C} = (R_{bi}scl(A) - A)^{C}$ and by assumption $(R_{bi}scl(A) - A)^{C}$ is R_{bi} -semi open and $A \bigcup (U - R_{bi}scl(A))$ is R_{bi} -semi open.

 $(iv) \Rightarrow (iii)$ Let $P = A \bigcup (R_{bi}scl(A))^{C}$. Then P^{C} is R_{bi} -semi closed and $P^{C} = R_{bi}scl(A) - A$ and therefore $R_{bi}scl(A) - A$ is R_{bi} -semi closed.

Theorem 3.5: If $A \in (U, \mathcal{T}_{R_{bi}}(X))$ is a R_{bi} -locally closed set, then A is R_{bi} -semi locally closed.

Proof: Let A be a R_{bi} -locally closed set. Then by definition of R_{bi} -locally closed set, A is the intersection of R_{bi} -open and R_{bi} -closed set. Since every R_{bi} -open set is R_{bi} -semi open and every R_{bi} -closed set is R_{bi} - semi closed, hence A is R_{bi} -semi locally closed set.

Example 3.6: Let $U = \{a, b, c, d\}$ with $U / R(X_1) = \{\{a\}, \{b\}, \{c, d\}\}, U / R(X_2) = \{\{b\}, \{d\}, \{a, c\}\}$ and $X_1 = \{a, c\}, X_2 = \{a, d\}$. Then $\tau_{R_{bi}}(X) = \{U, \phi, \{a\}, \{d\}, \{c, d\}, \{a, c\}, \{a, c, d\}\}$. The set $\{a, d\}$ is an R_{bi} -slc set but not R_{bi} -lc set.

Theorem 3.7: If $A \in (U, \mathcal{T}_{R_{bi}}(X))$ is a R_{bi} -semi locally closed set and B is R_{bi} -semi open in $(U, \mathcal{T}_{R_{bi}}(X))$, then $A \cap B$ is R_{bi} -semi locally closed.

Proof: Let A be a R_{bi} -semi locally closed set. Then by definition of R_{bi} -semi locally closed set, A is the intersection of R_{bi} -semi open and R_{bi} -semi closed set such that $A = G \cap F$. Now $A \cap B = (G \cap F) \cap B = (G \cap B) \cap F$, since $G \cap B$ is R_{bi} -semi open. Hence $A \cap B$ is R_{bi} -semi locally closed set in $(U, \mathcal{T}_{R_{u}}(X))$.

Definition 3.8: A subset A of $(U, \tau_{R_{bi}}(X))$, is called **Rough bi-semi generalized locally closed** set (briefly $R_{bi} - sglc$) if $A = G \cap F$, where G is $R_{bi} - sg$ open $(U, \tau_{R_{bi}}(X))$ and F is $R_{bi} - sg$ closed in $(U, \tau_{R_{bi}}(X))$.

The collection of all R_{bi} -semi generalized locally closed sets of $(U, \tau_{R_{bi}}(X))$ is denoted by $R_{bi}SGLC(U, \tau_{R_{bi}}(X))$.

Theorem 3.9: If $A \in (U, \mathcal{T}_{R_{bi}}(X))$ is a R_{bi} -locally closed set, then A is R_{bi} -sg locally closed set but not conversely.

Proof: Let A be a R_{bi} -locally closed set. Then by definition of R_{bi} -locally closed set, A is the intersection of R_{bi} -open and R_{bi} -closed set. Since every R_{bi} -open set is $R_{bi} - sg$ open and every R_{bi} -closed set is $R_{bi} - sg$ closed, A is $R_{bi} - sg$ locally closed set.

Example 3.10: In the example 3.7 R_{bi} – sglc sets are P(U) and hence the converse does not hold.

Theorem 3.11: If $A \in (U, \mathcal{T}_{R_{bi}}(X))$ is a R_{bi} -semi locally closed set, then A is R_{bi} -sg locally closed set but not conversely.

Proof: Let A be a R_{bi} -semi locally closed set. Then by definition of R_{bi} -semi locally closed set, A is the intersection of R_{bi} -semi open and R_{bi} -semi closed set. Since every R_{bi} -semi open set is $R_{bi} - sg$ open and every R_{bi} -semi closed set is $R_{bi} - sg$ closed, hence A is $R_{bi} - sg$ locally closed set.

Example 3.12: Let $U = \{a, b, c, d\}$ with $U / R(X_1) = \{\{a\}, \{d\}, \{b, c\}\}, U / R(X_2) = \{\{a\}, \{c\}, \{b, d\}\}$ and $X_1 = \{a, c\}, X_2 = \{c, d\}$. Then $\tau_{R_{bi}}(X) = \{U, \phi, \{a\}, \{c\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{b, c, d\}\}$. The set $\{c, d\}$ is an R_{bi} -sglc set but not R_{bi} -slc set.

Hence

$$R_{bi}$$
-lc \longrightarrow R_{bi} -slc \longrightarrow R_{bi} -sglc

The following two collections of subsets of $(U, \tau_{R_{bi}}(X))$ that is, $R_{bi}SGLC^*(U, \tau_{R_{bi}}(X))$ and $R_{bi}SGLC^{**}(U, \tau_{R_{bi}}(X))$ are defined as follows.

Definition 3.13: A subset A of $(U, \tau_{R_{bi}}(X))$, is called **Rough bi-semi generalized locally* closed set**, (briefly R_{bi} -sglc*) if there exist an R_{bi} -sg open set G and a R_{bi} -closed set F of $(U, \tau_{R_{bi}}(X))$ respectively, such that $A = G \cap F$.

Definition 3.14: A subset A of $(U, \tau_{R_{bi}}(X))$, is called **Rough bi-semi generalized locally**** closed set, if there exist an R_{bi} -open set G and a R_{bi} -sg closed set F of $(U, \tau_{R_{bi}}(X))$, respectively, such that $A = G \cap F$.

Remark 3.15:

- (i). If A is a $R_{bi} sg$ closed set of $(U, \tau_{R_{bi}}(X))$ then A is $R_{bi} sglc$ set.
- (ii). Every R_{bi} -sg open (resp.- R_{bi} -sg closed) subset of U is R_{bi} -sg locally closed.
- (iii). Every R_{bi} -sglc* set is R_{bi} -sglc set and every R_{bi} -sglc** set is R_{bi} -sglc set
- (iv). If every subset of $(U, \mathcal{T}_{R_{bi}}(X))$ is R_{bi} -locally closed, then it is R_{bi} -sglc* and R_{bi} -sglc** in $(U, \mathcal{T}_{R_{bi}}(X))$.

The following results are characterizations of $R_{bi}SGLC$ set, $R_{bi}SGLC$ set and $R_{bi}SGLC$ set. **Theorem 3.16:** For a subset A of $(U, \tau_{R_{bi}}(X))$, the following statements are equivalent.

(*i*).
$$A \in R_{bi}SGLC(U, \tau_{R_{i}}(X))$$

(*ii*).
$$A = P \cap (R_{bi} sgcl(A))$$
 for some $R_{bi} - sg$ open set P

(*iii*).
$$R_{bi}sgcl(A) - A$$
 is $R_{bi} - sg$ closed

(*iv*).
$$A \bigcup (R_{bi} sgcl(A))^C$$
 is $R_{bi} - sg$ open.

(v).
$$A \subseteq R_{bi} sg \operatorname{int}(A \bigcup (R_{bi} sgcl(A))^{C})$$

Proof: (*i*) \Rightarrow (*ii*) Let $A \in R_{bi}SGLC(U, \tau_{R_{bi}}(X))$. Then $A = P \cap F$ where P is $R_{bi} - sg$ open and F is $R_{bi} - sg$ closed. Since $A \subseteq P$ and $A \subseteq R_{bi}sgcl(A)$ implies $A \subseteq P \cap R_{bi}sgcl(A)$ conversely, by Remark 2.13(*iv*) $R_{bi}sgcl(A) \subseteq F$ and hence $P \cap R_{bi}sgcl(A) \subseteq P \cap F = A$. Therefore, $A = P \cap (R_{bi}sgcl(A))$.

(*ii*) \Rightarrow (*iii*) $A = P \cap (R_{bi}sgcl(A))$ implies $R_{bi}sgcl(A) - A = R_{bi}sgcl(A) \cap P^{C}$ which is $R_{bi} - sg$ closed since P^{C} is $R_{bi} - sg$ closed.

 $(iii) \Rightarrow (iv) A \bigcup (R_{bi} sgcl(A))^{C} = (R_{bi} sgcl(A) - A)^{C}$ and by assumption $(R_{bi} sgcl(A) - A)^{C}$ is $R_{bi} - sg$ open and therefore $A \bigcup (R_{bi} sgcl(A))^{C}$.

$$(iv) \Rightarrow (v)$$
 By assumption, $A \bigcup (R_{bi} sgcl(A))^{C} = R_{bi} sg \operatorname{int}(A \bigcup (R_{bi} sgcl(A))^{C})$ and hence
 $A \subseteq R_{bi} sg \operatorname{int}(A \bigcup (R_{bi} sgcl(A))^{C}).$

 $(v) \Rightarrow (i)$ By assumption and since $A \subseteq R_{bi} sgcl(A)$, $A = R_{bi} sg int(A \cup (R_{bi} sgcl(A))^{C}) \cap R_{bi} sgcl(A)$ $\in R_{bi} SGLC(U, \tau_{R_{bi}}(X)).$

Theorem 3.17: For a subset A of $(U, \tau_{R_{bi}}(X))$, the following statements are equivalent.

- (*i*). $A \in R_{bi}SGLC^*(U, \tau_{R_{bi}}(X))$
- (*ii*). $A = P \cap (R_{bi}cl(A))$ for some $R_{bi} sg$ open set P
- (*iii*). $R_{bi}cl(A) A$ is $R_{bi} sg$ closed
- (*iv*). $A \bigcup (U R_{bi}cl(A))$ is $R_{bi} sg$ open.

Proof: (*i*) \Rightarrow (*ii*) Let $A \in R_{bi}SGLC^*(U, \tau_{R_{bi}}(X))$. Then $A = P \cap F$ where P is $R_{bi} - sg$ open and F is R_{bi} -closed. Since $A \subseteq P$ and $A \subseteq R_{bi}cl(A)$, $A \subseteq P \cap R_{bi}cl(A)$. Conversely, since $A \subseteq F$, $R_{bi}cl(A) \subseteq F$, $A = P \cap F \supseteq P \cap R_{bi}cl(A)$. That is $P \cap R_{bi}cl(A) \subseteq A$. Therefore $A = P \cap (R_{bi}cl(A))$ (*ii*) \Rightarrow (*i*) Since P is $R_{bi} - sg$ open and $R_{bi}cl(A)$ is R_{bi} -closed, $P \cap R_{bi}cl(A) \in R_{bi}SGLC^*(U, \tau_{R_{bi}}(X))$ by Definition of $R_{bi}SGLC^*(U, \tau_{R_{bi}}(X))$

(*ii*) \Rightarrow (*iii*) $A = P \cap (R_{bi}cl(A))$ implies that $R_{bi}cl(A) - A = R_{bi}cl(A) \cap P^{C}$ which is $R_{bi} - sg$ closed, since P^{C} is $R_{bi} - sg$ closed.

 $(iii) \Rightarrow (ii)$ Let $P = (R_{bi}cl(A) - A)^C$. Then by assumption, P is $R_{bi} - sg$ open in $(U, \tau_{R_{bi}}(X))$ and $A = P \cap (R_{bi}cl(A))$.

 $(iii) \Rightarrow (iv) \quad A \bigcup (U - R_{bi}cl(A)) = A \bigcup (R_{bi}cl(A))^{C} = (R_{bi}cl(A) - A)^{C} \text{ and by assumption}$ $(R_{bi}cl(A) - A)^{C} \text{ is } R_{bi} - sg \text{ open and } A \bigcup (U - R_{bi}cl(A)) \text{ is } R_{bi} - sg \text{ open.}$ $(iv) \Rightarrow (iii) \text{ Let } P = A \bigcup (R_{bi}cl(A))^{C} \text{ Then } P^{C} \text{ is } R_{bi} \text{ sg open.}$

 $(iv) \Rightarrow (iii)$ Let $P = A \bigcup (R_{bi}cl(A))^C$. Then P^C is $R_{bi} - sg$ closed and $P^C = R_{bi}cl(A) - A$ and therefore $R_{bi}cl(A) - A$ is $R_{bi} - sg$ closed.

Theorem 3.18: Let A be a subset of $(U, \tau_{R_{bi}}(X))$. Then $A \in R_{bi}SGLC^{**}(U, \tau_{R_{bi}}(X))$ if and only if $A = P \cap (R_{bi}sgcl(A))$ for some R_{bi} -open set P.

Proof: Let $A \in R_{bi}SGLC **(U, \tau_{R_{bi}}(X))$. Then $A = P \cap F$ where P is R_{bi} -open and F is $R_{bi} - sg$ closed. Since $A \subseteq F$, $R_{bi}sgcl(A) \subseteq F$. Now $A = A \cap R_{bi}sgcl(A) = P \cap F \cap R_{bi}sgcl(A) = P \cap R_{bi}sgcl(A)$. **Corollary 3.19:** Let A be a subset of $(U, \tau_{R_{bi}}(X))$. If $A \in R_{bi}SGLC^{**}(U, \tau_{R_{bi}}(X))$, then $R_{bi}sgcl(A) - A$ is $R_{bi} - sg$ closed and $A \bigcup (R_{bi}sgcl(A))^{C}$ is $R_{bi} - sg$ open.

Proof: Let $A \in R_{bi}SGLC^{**}(U, \tau_{R_{bi}}(X))$. Then by Theorem 3.12, $A = P \cap R_{bi}sgcl(A)$ for some R_{bi} -open set P and $R_{bi}sgcl(A) - A = R_{bi}sgcl(A) \cap P^{C}$ is $R_{bi} - sg$ closed in $(U, \tau_{R_{bi}}(X))$. If $F = R_{bi}sgcl(A) - A$, then $F^{C} = A \cup (R_{bi}sgcl(A))^{C}$ and F^{C} is $R_{bi} - sg$ open and therefore $A \cup (R_{bi}sgcl(A))^{C}$ is $R_{bi} - sg$ open.

Theorem 3.20: Let A and B be subsets of $(U, \tau_{R_{W}}(X))$.

- (*i*). If $A \in R_{bi}SGLC^*(U, \tau_{R_{bi}}(X))$ and $B \in R_{bi}SGLC^*(U, \tau_{R_{bi}}(X))$, then $A \cap B \in R_{bi}SGLC^*(U, \tau_{R_{bi}}(X))$
- (*ii*). If $A \in R_{bi}SGLC^{**}(U, \tau_{R_{bi}}(X))$ and B is R_{bi} -closed or R_{bi} -open, then $A \cap B \in R_{bi}SGLC^{**}(U, \tau_{R_{bi}}(X))$
- (*iii*). If $A \in R_{bi}SGLC(U, \tau_{R_{bi}}(X))$ and B is $R_{bi} sg$ open or R_{bi} -closed, then $A \cap B \in R_{bi}SGLC(U, \tau_{R_{bi}}(X))$

Proof: (*i*) It follows from the Theorem 3.19 (*ii*), that there exists $R_{bi} - sg$ open sets P and Q such that $A = P \cap R_{bi}cl(A)$ and $B = Q \cap R_{bi}cl(B)$. Then $A \cap B \in R_{bi}SGLC^*(U, \tau_{R_{bi}}(X))$ since $P \cap Q$ is $R_{bi} - sg$ open and $R_{bi}cl(A) \cap R_{bi}cl(B)$ is R_{bi} -closed.

(*ii*) From definition of $R_{bi}SGLC^{**}(U, \tau_{R_{bi}}(X))$, there exist a R_{bi} -open set G and R_{bi} -sg closed set F such that $A \cap B = G \cap F \cap B$. Suppose that B is R_{bi} -open. Then $A \cap B \in R_{bi}SGLC^{**}(U, \tau_{R_{bi}}(X))$ next, suppose that B is R_{bi} -closed. Then by the Remark 2.13 (ii), it is proved that $F \cap B$ is R_{bi} -sg closed and therefore $A \cap B \in R_{bi}SGLC^{**}(U, \tau_{R_{bi}}(X))$

(*iii*) From definition, there exist a $R_{bi} - sg$ open set G and $R_{bi} - sg$ closed set F such that $A \cap B = G \cap F \cap B$. First suppose that B is $R_{bi} - sg$ open. Then by Remark 2.14 (ii), $G \cap B$ is $R_{bi} - sg$ open. So $A \cap B \in R_{bi}SGLC(U, \tau_{R_{bi}}(X))$.

Next suppose that B is R_{bi} -closed. Then by Remark 2.14 (i), it is proved that $F \cap B$ is $R_{bi} - sg$ closed and therefore $A \cap B \in R_{bi}SGLC(U, \tau_{R_{bi}}(X))$.

REFERENCES

- [1].Baby Bhattacharya, Arnab Paul and Sudip Debnath, Some Properties of (1,2)*-Locally Closed Sets, Hindawi Publishing Corporation International Journal of Analysis, Vol.2014.
- [2].Balachandran.K, Gnanambal.Y and Sundaram.P, Far East J. Math. Sci. Special Volume Part II 1997, Pp:189-200.
- [3].Bhattacharyya.P. and Lahiri.B.K., (1987), "Semi-generalized Closed Sets in Topology", Indian J. Pure Appl. Math., Vol.29, Pp: 375 – 382.
- [4].Bhuvaneswari.K and Ezhilarasi.A., (2014), "On Nano Semi-Generalized and Nano Generalized-Semi Closed Sets in Nano Topological Spaces" International Journal of Mathematics and Computer Applications Research (IJMCAR), Vol.4, Issue 3, Pp: 117-124.
- [5].Bhuvaneswari.K and Mythili Gnanapriya.K, Nano Generalized Locally Closed Sets and NGLC-Continuous Functions in Nano Topological Spaces, International Journal of Mathematics and its Applications, Vol.4, Issue 1-A (2116), 101-106.
- [6].Bhuvaneswari.K, and Sheeba Priyadharshini.J, On Nano (1,2)* Semi-Generalized Closed Sets in Nano Bitopological Spaces, International Journal of Applied Mathematics and Statistical Sciences, Vol. 5, Issue 3, Apr - May 2016, Pp:19-30.
- [7]. Bourbaki.N, General Topology, Part I, Addison-Wesley, Reading, Mass 1966.
- [8]. Jin Han Park and Jin Keun Park, On Semi Generalized Locally Closed Sets and SGLC-Continuous Functions, Indian J. Pure appl. Math., 31(9):1103-1112, September 2000.
- [9].Kelly.J.C, Bitopological spaces, Proceedings of the London Mathematical Society, Vol. 13, Pp:71–89, 1963.
- [10]. Levine.N (1963), "Semi-open Sets and Semi-continuity in Topological Spaces", Amer. Math. Monthly, 70(1), Pp: 36 - 41.
- [11]. LellisThivagar.M and Carmel Richard, On Nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention, 1(1)(2013), Pp:31-37.
- [12]. Zdzistaw Pawlak, Rough Sets, International Journal of Computer and Information Sciences, Vol. 11, No. 5, (1982), Pp: 341-356.