SIMULTANEOUS METHOD DEVELOPMENT AND VALIDATION OF EPROSARTAN AND HYDROCHLORTHIAZIDE IN HUMAN PLASMA BY RP-HPLC METHOD

Dr.G.Dharmamoorthy¹. K. Jhansi grace susmitha¹, P. Gopinath²

Dr. Anna Bhalaji

Dept. of Pharmaceutical Analysis.

Sree Vidyanikethan college of pharmacy. Rangampeta. Tirupathi.A.P

Corresponding Author;

Dr.G.DHARMAMOORTHY

Associate professor & HOD Dept.of Pharmaceutical Analysis Sree Vidyanikethan college of pharmacy, Rangampeta, Tirupathi, Andhrapradesh Email id; dharmamoorthy111@gmail.com Phone no; 9603774847

<u>REVEIWED BY</u> 1)Dr. P. DHARANI PRASAD

M.pharm.ph.D Professor & HOD Department of Pharma.D, Sree Vidyanikethan college of Pharmacy, Rangampeta. Tirupathi 517103 Mobile no; +91 9491201679 Emai id <u>dharaniprasad@gmail.com</u>

2)Dr. Bava Bakrudheen

M.pharm.PhD AssociateProfessor & HOD Department of Pharmaceutics Sree vidyanikethan college of pharmacy, Rangampeta, Tirupathi 517103 Mobile no; +91 8122330393 Emai id; deen_pharma@yahoo.com

Abstract

A new simple and precise stability indicating bioanalytical reverse-phase High Performance Liquid Chromatography (RP-HPLC) method was developedand validated for the simultaneous estimation of Eprosartan and Hydrochlorothiazidein their formulation and in human plasma. The developed method was successfully used for assaying drug contents in plasma. Isocratic elution mode was carried at Symmetry C 18 (150mm x 4.6 mm, 5 μ) column using 0.1% Orthophosphoric acidpH (2.2): Acetonitrile (65:35v/v) as mobile phase at flow rate 1.0mlmin at detection wavelength 240 nm. Valsartan was taken as an internal standandard. The method was validated as per ICH guidelines. It is concluded that the present validated method can be successfully applied for the estimation of Eprosartan and Hydrochlorothiazidein human plasma over the concentration range of 80 to 3200 ng /ml of Eprosartan, 8.5 to 340 ng /ml of Hydrochlorothiazide. The method for determination of Eprosartan and Hydrochlorothiazidein human plasma using HPLC detection met the acceptance criteria with respect to selectivity, precision, accuracy, linearity, recovery.

Key words: ICH guidelines, Eprosartan, Hydrochlorothiazide, K2EDTA Plasma, Valsartan, Internal standard, Validation

Introduction

Eprosartan mesylate is a non-biphenyl non-tetrazole angiotensin II receptor (AT₁) antagonist¹⁻². A selective non-peptide molecule is chemically described as $4-(\{2-butyl-5-[(1E)-2-carboxy-2-(thiophen-2-ylmethyl)eth-1-en-1-yl]-1H-imidazol-1-yl\}methyl)benzoic acid (Fig 1). Its Chemical Formula is C₂₃H₂₄N₂O₄S•ECH₄O₃S and Eprosartan mesylate is a white to off-white free-flowing crystalline powder that is insoluble in water, freely soluble in ethanol. It performs 2 actions on the renin angiotensin system. By preventing the binding of angiotensin II to AT1, vascular smooth muscle relaxes and vasodilation occurs^{-3,4}. By inhibiting norepinephrine production, blood pressure is further reduced.$

Fig 1: Chemical structure of Eprosartan

Hydrochlothiazide(HCT) is a thiazide diuretic is 6-chloro-3,4-dihydro-2 H 1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide. Its empirical formula is $C_7H_8ClN_3O_4S_2$. It is a

white, or practically white, crystalline powder, slightly soluble in water. Hydrochlorothiazide inhibits sodium reabsorption in the distal tubules causing increased excretion of sodium and water as well as potassium and hydrogen ions^{5-7.}

Fig 2: Chemical structure of Hydrochlorothiazide

Literature reveals that few methods have been reported for the simultaneous estimation of prazosin and polythiazide by using spectroscopic and chromatographic methods. But there is no reported for the bioanalytical methods. The main aim of the present study is to develop a precise, sensitive, accurate, selective, reproducible and rapid analytical technique for estimation of Eprosartan and Hydrochlorthiazide in human plasma.

Materials and Methods

Materials: API Eprosartan, Hydrochlorothiazide API was gifted by BMR chemicals, Hyderabad.

S.no	Chemical name	Grade	Manufacturing company
1	Distilled water HDLC water		Rankem, Avantor performance
1	Distined water HFLC water	ΠΓLC	material India limited
2	HDLC weter	Analytical	Rankem, Avantor performance
Z	HFLC water	Reagent	material India limited
3	Acotonitrila	Analytical	Rankem, Avantor performance
5	Acetomune	Reagent	material India limited
4	Phosphata buffer	Analytical	Rankem, Avantor performance
4	r nospitate burier	Reagent	material India limited
5	Mathanal	Analytical	Rankem, Avantor performance
5	Methanor	Reagent	material India limited
6	Sodium dihydrogen	Analytical	Rankem, Avantor performance
0	phosphate	Reagent	material India limited
7	Ortho phosphoric acid	Analytical	Rankem, Avantor performance
1	Ortho-phosphoric acid	Reagent	material India limited

Human plasma: K ₂ EDTA control plasma procured by Deccan Pathological labs, Hyderabad.
Table 1: List of Chemicals and Solvents

S.no	Instrument	Company name	Brand name
1	Electronic balance	Sartorious	Denver
2	pH meter	Metsar	BVK enterprises
3	Sonicator	Lab man	BVK enterprises
4	Centrifuge	Thermo Fisher	-
5	Vertex	Remi CM101	-
6	HPLC water	Alliance	Water HPLC 2695 SYSTEM

Table 2: List of Instruments

Method Development

Diluent: Based up on the solubility of the drugs, diluent was selected, 0.1% orthophosphoric acidand Acetonitrile taken in the ratio of 50:50.

Preparation of Eprosartan Stock solution (160 µg/ml):

Take 16 mg of Eprosartan in 100 ml volumetric flask and make the volume with diluent to produce 160µg/ml

Preparation of Eprosartan Spiking Solutions:

From the above Eprosartan stock solution 0.05ml, 0.1ml, 0.15ml, 0.6ml, 1.0ml, 1.2ml, 1.6ml and 2.0 ml was pipette and transferred to 8 individual 10 ml volumetric flask and make up the volume up to the mark with diluent to produce 0.8μ g/ml, 1.6μ g/ml, 2.4 µg/ml, 9.6 µg/ml, 16 µg/ml, 19.2µg/ml, 25.6 µg/ml and 32.0µg/ml.Calibration standards and quality control (QC) samples were prepared by spiking blank plasma with working stock dilutions of analytes to produce 80ng/ml, 160ng/ml, 240ng/ml, 960ng/ml, 1600ng/ml, 1920ng/ml, 2560ng/ml and 3200ng/ml.

Preparation of Hydrochlorothiazide Stock solution (17µg/ml):

Take 1.7 mg of Hydrochlorothiazide in 100 ml volumetric flask and make the volume with diluent to produce $17 \,\mu$ g/ml.

Preparation of Hydrochlorothiazide Spiking Solutions:

From the above Hydrochlorothiazide stock solution 0.05ml, 0.1ml, 0.15ml, 0.6ml, 1.0ml, 1.2ml, 1.6ml and 2.0 ml was pipette and transferred to 8 individual 10 ml volumetric flask and make up the volume up to the mark with diluent to produce 0.085 μ g/ml, 0.17 μ g/ml, 0.255 μ g/ml, 1.02 μ g/ml, 1.7 μ g/ml, 2.04 μ g/ml, 2.72 μ g/ml and 3.4 μ g/ml.Calibration standards and quality control (QC) samples were prepared by spiking blank plasma with working stock dilutions of analytes to produce 8.5ng/ml, 17ng/ml, 25.5ng/ml, 102ng/ml, 170ng/ml, 204 ng/ml, 272ng/ml and 340ng/ml.

Preparation of internal standard Solution (Valsartan):

Stock-1: Take 50 mg of Valsartan in 100 ml volumetric flask and make up the volume with diluent to produce 500µg/ml.

Stock-2: From the above solution, take 1ml of solution into 10 ml volumetric flask and make up the volume with diluent to produce $50\mu g/ml$ solutions.

Final concentration: From the above solution, take 0.5ml of solution and spiking blank plasma with working stock dilutions of analyte to produce 10µg/ml ISD concentration

Extraction procedure:

Take 750 μ l of plasma and 500 μ l of internal standard, 250 μ l of Eprosartan and 250 μ l of Hydrochlorothiazide from the spiking solutions of both into a centrifuging tube and add 1 ml of Acetonitrile go for cyclomixer for 15 sec. Then vertex for 2 min and finally centrifuge for 5 min at 3200 rpm speed. After the centrifugation collect the sample and filter it directly inject 50 μ L into HPLC.

Optimized Chromatographic Conditions:

Mobile phase	: 0.1% Ortho phosphoric acid pH (2.2): Acetonitrile (65:35)
Flow rate	: 1.0ml/min
Column	: Symmetry c18 (150mm x 4.6 mm, 5µ)
Detector wavelength	: 240nm
Column temperature	$: 30^{0}$ C
Injection volume	: 20µL

Fig 3: Optimized chromatogram for Eprosartan and Hydrochlorothiazide

Method Validation

System suitability:

All the system suitability parameters were within the range and satisfactory as per ICH guidelines. The % CV for system suitability test was in the range of 0.94 for Retention time (RT) of Eprosartan, 0.26 for Retention time (RT) of Hydrochlorothiazide and 0.88% for the area ratio (analyte area/IS area) of Valsartan. The results were shown in table 3 & 4.

Auto sampler Carryover test:

Due to the auto-sampler was investigated by injecting a sequence of un-extracted and extracted samples. Results demonstrated that no significant carry over was observed during this experiment. The data was given in table 5 & 6.

Matrix factor evaluation:

Matrix effect is played a vital role in the assessment of pharmacokinetic studies. It was expressed as internal standard normalized matrix factor and it was varied from 0.90-0.99 which was close to 1 which indicates there is no ionization suppression or enhancement in plasma samples. The results were explained in table 7&8.

Quality control samples:

The chromatography observed during the course of Eprosartan and Hydrochlorothiazide was acceptable and representative chromatograms of standard Blank, standard zero (standard blank with internal standard) QC-LLOQ, QC-L, QC-M1, QC-M2 and QC-H samples. Sample chromatograms were shown in fig 4, 5,6,7,8 & 9.

Selectivity/Specificity:

To establish the selectivity of the method, possible interference at the retention time of Eprosartan, Hydrochlorothiazide and Internal standard due to endogenous plasma components were checked during the validation. Selectivity was performed by testing six batches of K₂EDTA blank plasma and the mass detection of extracted blank plasma gave good selectivity of both drug and internal standard. No interferences were found at the retention times of analytes and internal standard. Representative chromatograms of standard blank and blank with internal standard sample using pooled plasma.

Linearity:

Calibration was found to be linear over the concentration range of 80 to 3200ng /ml for Eprosartan, 8.5 to 340 ng /ml Hydrochlorothiazide. The coefficient correlation (r^2) value was found consistently greater than 0.999 in all the cases. This indicating linearity of results and an excellent correlation between peak area ratios for each concentration of analytes. The data was shown in table 9 & 10.

Precision and Accuracy:

The intraday and inter day accuracy and precision was assessed by analysing six replicates at five different QC levels like LLOQ, LQC, MQC and HQC. Accuracy and precision method performance was evaluated by determined by six replicate analyses for Eprosartan at four concentration levels, i.e., 80ng/ml(LLOQ), 640ng/ml (LQC), 1600ng/ml (MQC) and 2560µg/ml (HQC), Hydrochlorothiazide at 8.5ng/ml(LLOQ), 25.5 ng/ml (LQC), 170ng/ml (MQC) and 272ng/ml (HQC), The intra-day and inter day accuracy of plasma samples were assessed and

excellent mean % accuracy was obtained with range varied from 100.13 to 100.66%, and 99.16 to 100.87% for intraday and 99.72 to100.78% and 99.28 to 100.80% for inter day respectively. The precision (%CV) of the analytes and plasma samples were calculated and found to be 0.91 to 1.76% and 0.89 to 1.36% for intraday and 0.98 to 1.58% and 0.93 to 1.15% for inter day respectively. The results were given in table 11 & 12.

Recovery:

Recovery was determined by measuring the peak areas obtained from prepared plasma samples with those extracted blank plasma spiked with standards containing the same area with known amount of Eprosartan and Hydrochlorothiazide. The overall % mean recovery for Eprosartan and Hydrochlorothiazide was found to be 98.85% and 98.67%. The overall % mean recovery for Valsartan was found to be 98.11%. The results were demonstrated in table 13, 14 & 15.

Stabilities:

Long term stock solution stability for Eprosartan: In bench-top stability, six replicates of LQC & HQC samples (240 and 2560 ng/ml) were analyzed for 9 hours at room temperature on the laboratory bench. The % mean stability was calculated and found to 99.96% for LQC and 99.19% for HQC respectively.

Long term stock solution stability for Hydrochlorothiazide: In bench-top stability, six replicates of LQC & HQC samples (25.5 and 272 ng/ml) were analyzed for 9 hours at room temperature on the laboratory bench. The % mean stability was calculated and found to 99.69% for LQC and 99.89% for HQC respectively.

Matrix samples stability at -28±5 °C for 37 days & -80±5 °C:

Long term stock solution stability for the Eprosartan was determined at a concentration of LQC-HQC level after a storage period of 37 days at $-28^{\circ}C\& -80^{\circ}C$ in refrigerator. The % mean stability of the Eprosartan was found to be 99.90%, 100.10% at $28 \pm 5^{\circ}C$ and 100.16%, 100.84% at $80 \pm 5^{\circ}C$ respectively. Long term stock solution stability for the Hydrochlorothiazide was determined at a concentration of LQC-HQC level after a storage period of 37 days at $-28^{\circ}C\& -80^{\circ}C$ in refrigerator. The % mean stability of the Hydrochlorothiazide was found to be 100.94%, 100.42% at $28 \pm 5^{\circ}C$ and 101.11%, 100.24% at $80 \pm 5^{\circ}C$ respectively. The data was shown in table 17 & 18.

Sample	File	Analyte	Analyte	ISTD	ISTD	Area	
Name	Name	Area	RT (min)	Area	RT (min)	Ratio	
AQ MQC		53992	2.86	93279	2.31	0.5788	
AQ MQC		53540	2.83	93088	2.33	0.5752	
AQ MQC		54019	2.79	93705	2.35	0.5765	
AQ MQC		53966	2.86	92324	2.34	0.5845	
AQ MQC		54585	2.84	94280	2.32	0.5790	
AQ MQC		53782	2.85	93794	2.33	0.5734	
ME	AN		2.839		2.329	0.57789	
SI)		0.0268		0.0152	0.003891	
%C	CV		0.94		0.65	0.67	

Results and Discussion

Table 3: System suitability of Eprosartan

Table 4: System suitability of Hydrochlorothiazide

Sample	File	Analyte	Analyte	ISTD	ISTD	Area
Name	Name	Area	RT (min)	Area	RT (min)	Ratio
AQ MQC		16814	3.39	93279	2.31	0.1803
AQ MQC		16781	3.38	93088	2.33	0.1803
AQ MQC		16884	3.36	93705	2.35	0.1802
AQ MQC		16754	3.38	92324	2.34	0.1815
AQ MQC		16698	3.37	94280	2.32	0.1771
AQ MQC		16723	3.38	93794	2.33	0.1783
MEAN			3.379		2.329	0.17960
SD			0.0087		0.0152	0.001588
%C	V		0.26		0.65	0.88

Table 5: Auto sampler carryover of Eprosartan

Acquisition Batch ID			Date			
Sampla ID	Peak Area		% Ca	rryover		
Sample ID	Drug	ISTD	Drug	ISTD		
Unextracted samples						
RS	0	0	N/A	N/A		
AQ ULOQ	108454	94128	0.00	0.00		
RS	0	0	0.00	0.00		
AQ LLOQ	2785	94023	N/A	N/A		
Extracted samples						

STD Blk	0	0	N/A	N/A
ULOQ	107879	93327	0.00	0.00
STD Blk	0	0	0.00	
LLOQ	2694	93388	N/A	N/A

Table 6: Auto sampler carryover of Hydrochlorothiazide

Acquisition Batch ID			Date		
Samula ID	Peak Area		% Carryover		
Sample ID	Drug	ISTD	Drug	ISTD	
	Un	extracted sampl	es		
RS	0	0	N/A	N/A	
AQ ULOQ	35158	94128	0.00	0.00	
RS	0	0	0.00		
AQ LLOQ	868	94023	N/A	N/A	
	E	xtracted sample	s		
STD Blk	0	0	N/A	N/A	
ULOQ	33686	93327	0.00	0.00	
STD Blk	0	0	0.00	0.00	
LLOQ	843	93388	N/A	N/A	

Table 7: Matrix factor evaluation of Eprosartan (absence of matrix factor)

Acquisition Batch ID		Date		
		HQC	LQC	
		Nominal Concentration (ng/mL)		
S No	Plasma Lot	2560.000	640.000	
D. INU.	No.			
		(2,176.000-2,944.000)	(544.000-736.000)	
		Calculated Concentration (ng/mL)		
	LOT1	2525.980	641.073	
1		2696.979	640.076	
		2693.041	644.074	
	LOT2	2656.033	648.076	
2		2526.011	637.074	
		2477.931	639.072	
		2591.034	646.071	
3	LOT3	2567.940	643.075	
		2493.976	642.075	
1		2489.090	641.071	
4	LU14	2485.928	645.072	

		2501.018	642.071
		2491.957	641.072
5	LOT5	2502.126	647.071
		2490.058	646.076
		2492.872	660.075
6	LOT6	2504.941	651.076
		2493.086	659.076
N		18	18
Mean		2537.7778	645.1848
SD		72.80512	6.26825
% CV		2.87	0.97
% Mean Accuracy		99.13	100.81
No. of QC Failed		0	0

 Table 8: Matrix factor evaluation of Hydrochlorothiazide

Acquisition Batch ID		Date			
		HQC	LQC		
		Nominal Concentration (ng/mL)			
S No	Plasma Lot	272.000	25.500		
D. INU.	No.	Nominal Concentrat	tion Range (ng/mL)		
		(231.200-312.800)	(21.675-29.325)		
		Calculated Conce	ntration (ng/mL)		
		273.97	26.36		
1	LOT1	271.59	24.54		
		271.94	22.57		
	LOT2	273.91	24.60		
2		278.03	25.70		
		276.88	27.36		
	LOT3	273.06	25.97		
3		279.83	25.97		
		270.09	26.56		
		278.81	25.48		
4	LOT4	272.12	25.25		
		279.77	26.32		
		274.09	25.25		
5	LOT5	271.74	25.36		
		275.81	26.26		
6	LOT6	271.78	25.78		

	277.15	26.17
	274.01	25.48
Ν	18	18
Mean	274.6996	25.6109
SD	3.05969	1.02364
% CV	1.11	4.00
% Mean Accuracy	100.99	100.44
No. of QC Failed	0	0

Fig 4: Chromatogram of standard Zero sample

Fig 5: Chromatogram of QC-LLOQ sample Hydrochlorothiazide, Eprosartan

Fig 6: Chromatogram of QC-LQC sample Eprosartan, Hydrochlorothiazide and

Fig 7: Chromatogram of QC-MQC sample Eprosartan, and Hydrochlorothiazide

Fig 8: Chromatogram of QC-HQC sample Eprosartan, and Hydrochlorothiazide

Fig 9: Chromatogram of ULOQ sample Eprosartan& Hydrochlorothiazide

	STD1	STD2	STD3	STD4	STD5	STD6	STD7	STD8	
	Nominal Concentration (ng/mL)								
	80.00	160.00	240.00	640.00	1600.0	1920.00	2560.00	3200.00	
Acquisition	0	0	0	0	00	0	0	0	
Batch ID	Nominal Concentration Range (ng/mL)								
	(64.00	(136.00	(204.00	(544.0	(1,360.	(1,632.0	(2,176.0	(2,720.0	
	0-	0-	0-	00-	000-	00-	00-	00-	
	96.00	184.00	276.00	736.00	1,840.0	2,208.00	2,944.00	3,680.00	
	0)	0)	0)	0)	00)	0)	0)	0)	

Table 9: Linearity of Eprosartan

		Back Calculated Concentration (ng/mL)								
D & A 1	75.04	154.04	232.05	629 16	1573.4	1909 65	2512 66	2224.04		
raAl	3	7	6	036.40	5	1090.03	2343.00	3224.94		
$D \mathcal{P} \Lambda \mathcal{I}$	79.04	161.03	3 238.07 (12 (2) 1586.2 101 (25		2565 27	2221.69				
raa2	1	2	4	042.05	5	1910.33	2303.57	5251.08		
$D \& \Lambda 3$	84.01	164.01	244.05	611 78	1595.8	1022.28	2578 25	2225 18		
ræas	5	5	2	044.78	4	1923.30	2378.33	5255.40		
Ν	3	3	3	3	3	3	3	3		
Maan	79.36	159.69	238.06	641.95	1585.1	1912.79	2562.46	3230.69		
Iviean	63	80	07	63	803	10	00	87		
SD	4.494	5.1161	5.9980	3.2165	11.229	12.7384	17.5234	5 22204		
5D	84	0	1	1	92	3	2	3.33394		
%CV	5.66	3.20	2.52	0.50	0.71	0.67	0.68	0.17		
% Mean Accuracy	99.21	99.81	99.19	100.31	99.07	99.62	100.10	100.96		

Fig 10: Calibration curve of Eprosartan

Table 10: Linearity of	f Hydrochlorothiazide
------------------------	-----------------------

	STD1	STD2	STD3	STD4	STD5	STD6	STD7	STD8		
	Nominal Concentration (ng/mL)									
	8.500	17.000	25.500	68.000	170.000	204.000	272.000	340.000		
Acquisition Batch ID	Nominal Concentration Range (ng/mL)									
	(6.800-	(14.450-	(21.675-	(57.800-	(144.500-	(173.400-	(231.200-	(289.000-		
	10.200)	19.550)	29.325)	78.200)	195.500)	234.600)	312.800)	391.000)		
	Back Calculated Concentration (ng/mL)									
P&A1	8.547	17.097	25.146	68.997	172.447	205.015	273.997	341.995		

P&A2	8.452	17.132	25.349	67.532	170.532	204.986	267.698	339.992
P&A3	8.549	16.897	25.546	68.294	169.443	205.640	269.993	345.998
n	3	3	3	3	3	3	3	3
Mean	8.5160	17.0420	25.3470	68.2743	170.8073	205.2137	270.5627	342.6617
SD	0.05543	0.12679	0.20001	0.73270	1.52081	0.36950	3.18791	3.05800
%CV	0.65	0.74	0.79	1.07	0.89	0.18	1.18	0.89
% Mean Accuracy	100.19	100.25	99.40	100.40	100.47	100.59	99.47	100.78

Fig 11: Calibration curve of HydrochlorothiazideTable 11: Precision&Accuracy of Eprosartan

		HQC	MQC1	LQC	LLOQ QC			
		Noi	Nominal Concentration (ng/mL)					
		2560.000	1600.000	640.000	80.000			
Acquisition Batch ID	Date	Nomi	nal Concentrati	on Range (n	g/mL)			
		(2,176.000-	(1,360.000-	(544.000-	(64.000-			
		2,944.000)	1,840.000)	736.000)	96.000)			
		Back (Back Calculated Concentration (ng/mL)					
		2483.46	1556.44	632.032	79.013			
		2523.26	1583.63	638.256	82.351			
		2538.32	1563.98	643.035	79.451			
		2587.46	1587.35	648.075	78.635			
		2535.37	1617.46	653.234	81.483			
		2579.13	1635.36	657.013	80.146			
Ν		6	6	6	6			
Mean	n 2541.1675 1590.7003 645.2742 80.1798							

SD	38.14939	30.52685	9.36619	1.46237
%CV	1.50	1.92	1.45	1.82
% Mean Accuracy	99.26	99.42	100.82	100.22
	2532.12	1601.79	648.055	79.022
	2581.93	1604.89	650.059	82.362
	2543.57	1615.66	646.065	86.019
	2479.94	1595.79	645.066	84.020
	2575.78	1593.69	643.060	74.018
	2574.46	1591.43	640.058	72.460
Ν	6	6	6	6
Mean	2547.9667	1600.5403	645.3938	79.6502
SD	38.79897	8.96310	3.55869	5.49228
%CV	1.52	0.56	0.55	6.90
% Mean Accuracy	99.53	100.03	100.84	99.56

Table 12: Precision&Accuracy of Hydrochlorothiazide

		HQC	MQC1	LQC	LLOQ QC
		Noi	minal Concent	tration (ng/r	nL)
		272.000	170.000	25.500	8.500
Acquisition Batch ID	Date	Nomi	nal Concentrat	ion Range (n	g/mL)
		(231.200-	(144.500-	(21.675-	(6.800-
		312.800)	195.500)	29.325)	10.200)
		Back (Calculated Con	centration (n	ig/mL)
		273.997	171.997	25.348	8.463
		269.245	170.364	25.751	8.153
		273.993	174.994	24.949	8.244
		269.300	169.997	25.554	8.653
		267.990	172.336	25.445	8.541
		272.887	169.991	25.457	8.478
N		6	6	6	6
Mean		271.2353	171.6132	25.4173	8.4220
SD		2.69068	1.94441	0.26702	0.18782
%CV		0.99	1.13	1.05	2.23
% Mean Accur	racy	99.72	100.95	99.68	99.08
		268.998	171.997	25.649	8.446
		271.995	169.585	24.952	8.649
		273.216	168.994	25.346	8.743
		274.998	171.347	25.455	8.452

	265.300	172.991	24.943	8.349
	267.000	170.888	25.158	8.555
Ν	6	6	6	6
Mean	2547.9667	270.2512	170.9670	25.2505
SD	38.79897	3.76877	1.49069	0.28353
%CV	1.52	1.39	0.87	1.12
% Mean Accuracy	99.53	99.36	100.57	99.02

Table 13: Recovery of Eprosartan

Acquisition							
Batch ID							
	H()C	MQ	C1	LQC		
Banlicata No	Un	Extracte	Un	Extracte	Un	Extracte	
Replicate 140.	extracted	d	extracted	d	extracted	d	
	Response	Response	Response	Response	Response	Response	
1	87536	86420	54704	53658	2748	2702	
2	87355	86574	54396	54157	2732	2706	
3	87414	87248	54461	54030	2744	2693	
4	87670	86981	54673	53914	2730	2708	
5	87802	87055	54659	53440	2761	2716	
6	87947	87301	54367	53646	2735	2713	
Ν	6	6	6	6	6	6	
Mean	87621	86930	54543	53808	2742	2706	
SD	229.03	358.84	152.04	270.74	11.78	8.21	
% CV	0.26	0.41	0.28	0.50	0.43	0.30	
% Mean	00	21	08	65	08	71	
Recovery	<u>, , , , , , , , , , , , , , , , , , , </u>	21	90.	05	90.	/1	
Overall %		00.825					
Mean Recovery	98.858						
Overall SD		0.3078					
Overall % CV			0.3	31			

Table 14: Recovery of Hydrochlorothiazide

Acquisition						
Batch ID						
	HO	QC	MQ	QC1	L()C
Replicate No.	Un extracted Response	Extracted Response	Un extracted Response	Extracted Response	Un extracted Response	Extracted Response

1	27136	26844	16846	16802	2601	2625	
2	27399	26623	16961	16833	2620	2571	
3	27539	27132	16807	16790	2627	2583	
4	27683	26882	17082	16806	2602	2614	
5	27566	27021	16997	16796	2619	2582	
6	27413	26756	17164	16781	2636	2597	
Ν	6	6	6	6	6	6	
Mean	27456	26876	16976	16801	2618	2595	
SD	188.69	182.22	136.17	17.86	13.81	20.75	
% CV	0.69	0.68	0.80	0.11	0.53	0.80	
% Mean	07.00		08	08.07		00.15	
Recovery	97.89		98.97		99.13		
Overall %	08 671						
Mean Recovery	98.071						
Overall SD	0.6833						
Overall % CV	0.69						

 Table 15: Recovery of Valsartan (IS)

Acquisition Batch ID	Date	
C No	Un extracted Area	Extracted Area
D.INO.	Ratio	Ratio
1	94178	93309
2	94327	93985
3	94876	93464
4	94207	93885
5	94417	93449
6	93896	93529
Ν	6	6
Mean	94316.8	93603.5
SD	325.96	268.48
% CV	0.35	0.29
% Mean Recovery	99.24	

Acquisition Batch ID	Date			
	HQC	LQC		
	Nominal Concentration (ng/mL)			
Replicate No.	2560.000	640.000		
Itepiteute 1(0)	Nominal Concentration Range (ng/mL)			
	(2,176.000-2,944.000)	(544.000-736.000)		
	Calculated Concentration (ng/mL)			
1	2512.997	647.073		
2	2538.253	637.076		
3	2549.994	639.070		
4	2567.030	627.079		
5	2519.991	645.067		
6	2548.060	643.082		
N	6	6		
Mean	2539.3875	639.7412		
SD	20.12853	7.22725		
% CV	0.79	1.13		
% Mean Accuracy	99.19	99.96		

Table 16: Long term stock solution stabili	ty
--	----

Table 17: Matrix samples stability at -28±5 °C for 37 days (Eprosartan)

	Н	QC	LQC		
	Nominal Concentration (ng/mL)				
Replicate No.	2560.000	2560.000	640.000	640.000	
	Nominal Concentration Range (ng/mL)				
	(2,176.000-	(2,176.000-	(544.000-	(544.000-	
	2,944.000)	2,944.000)	736.000)	736.000)	
	Calculated Concentration (ng/mL)				
	Comparison	Stability Samplas	Comparison	Stability Samplas	
	Samples	Stability Samples	Samples	Stability Samples	
1	2562.996	2566.997	635.074	636.075	
2	2553.999	2557.356	632.071	631.072	
3	2560.993	2563.994	648.077	649.078	
4	2553.002	2556.003	630.068	628.069	
5	2562.993	2567.991	641.080	642.081	
6	2564.005	2561.006	639.065	635.066	
N	6	6	6	6	

Mean	2559.6647	2562.2245	637.5725	636.9068
SD	4.88404	4.96094	6.59850	7.63076
% CV	0.19	0.19	1.03	1.20
%Mean	00.00	100.00	00.62	00.52
Accuracy	77.77	100.09	99.02	99.32
% Mean	100.10		00 00	
Stability				<i>77.70</i>

Table 18: Matrix samples stability at -28±5 °C for 37 days(Hydrochlorothiazide)

Acquisition			Date			
Batch ID			Date			
	HQC		LQ	QC		
		Nominal Concer	ntration (ng/mL)			
	272.000	272.000	25.500	25.500		
		Nominal Concentra	tion Range (ng/mL)			
Replicate No.	(231.200-	(231.200-	(21,675,20,225)	(21.675-29.325)		
	312.800)	312.800)	(21.075-29.325)			
	Calculated Concentration (ng/mL)					
	Comparison	Stability Samples	Comparison	Stability Samples		
	Samples	Stability Samples	Samples	Stability Samples		
1	269.071	272.881	25.352	25.846		
2	272.981	274.772	25.225	25.652		
3	271.161	273.021	25.549	25.648		
4	273.021	269.013	25.148	25.150		
5	273.780	274.961	25.153	25.154		
6	268.891	271.052	25.351	25.751		
Ν	6	6	6	6		
Mean	271.4842	272.6167	25.2963	25.5335		
SD	2.12252	2.27197	0.15334	0.30437		
% CV	0.78	0.83	0.61	1.19		
%Mean	00.81	100.23	99.20	100.13		
Accuracy	99.01					
% Mean	100.42		100	0/		
Stability			100.94			

Conclusion

Based on the results obtained in this study, it is concluded that the present validated method can be successfully applied for the estimation of Eprosartan and Hydrochlorothiazide in human plasma over the concentration range of 80 to 3200 ng /m of Eprosartan, 8.5 to 340ng /ml of Hydrochlorothiazide. The method for determination of Eprosartan and Hydrochlorothiazide in human plasma using HPLC detection met the acceptance criteria with respect to selectivity, precision, accuracy, linearity, recovery. Stability evaluations performed in k2EDTA human plasma, stock solutions and stock dilutions met the acceptance criteria, demonstrating insignificant degradation of Eprosartan and Hydrochlorothiazide over the specified storage durations and conditions.

Acknowledgement; The authors are thanful to Spectrum Research solution .Hyderabad,for providing gift samples of Eprosartan &Hydrochlorthiazide and thankful to Deccanpathological Labs.Hyderabad to provide K₂EDTA controlled plasma.The authors are Special thankful to Sree vidyanikethan college of pharmacy to provide the facilities to complete this research work. **Conflict of Interest;** The authors declared no conflict of interest.

REFERRENCES:

- 1. R uilope L, Jager B, Prichard B: Eprosartan versus enalapril in elderly patients with hypertension: a double-blind, randomized trial. Blood Press. 2001;10(4):223-9. [PubMed:11800061]
- 2. Ruilope L, Jager B: Eprosartan for the treatment of hypertension. Expert OpinPharmacother. 2003 Jan;4(1):107-14. [PubMed:12517247]
- 3. Hedner T: The clinical profile of the angiotensin II receptor blocker eprosartan. J Hypertens Suppl. 2002 Jun;20(5):S33-8. [PubMed:12184062]
- Blankestijn PJ, Rupp H: Clinical profile of eprosartan: a different angiotensin II receptor blocker. CardiovascHematol Agents Med Chem. 2008 Oct;6(4):253-7. [PubMed:18855637]
- Pickkers P, Hughes AD, Russel FG, Thien T, Smits P: Thiazide-induced vasodilation in humans is mediated by potassium channel activation. Hypertension. 1998 Dec;32(6):1071-6. doi: 10.1161/01.hyp.32.6.1071. [PubMed:9856976]
- Gamba G The thiazide-sensitive Na⁺-Cl⁻ cotransporter: molecular biology, functional properties, and regulation by WNKs. Am J Physiol Renal Physiol. 2009 Oct;297(4):F838-48. doi:
- Niemeyer C, Hasenfuss G, Wais U, Knauf H, Schafer-Korting M, Mutschler E: Pharmacokinetics of hydrochlorothiazide in relation to renal function. Eur J ClinPharmacol. 1983;24(5):661-5. doi: 10.1007/bf00542218. [PubMed:6873147]
- 8. PeeyushJain,*et al.* A Liquid Chromatography Tandem Mass Spectrometry based method for the Simultaneous Determination of Irbesartan and Hydrochlorothiazide in Human Plasma. International Journal of Drug Development and Research.2014.
- 9. Harsha U. Patel, Bhanubhai N. Suhagia, 1, *et al.* Simultaneous analysis of eprosartan and hydrochlorothiazide in tablets by high-performance liquid chromatography. Pharm Methods. 2(2):2011; 143–147.

- 10. K. Anandakumar*, et al. Development and Validation of a UV Spectrophotometric Method for the Simultaneous Estimation of EprosartanMesylate and Hydrochlorothiazide in Bulk and Formulations. Indian J Pharm Sci, 73 (5):2011. 569-572.
- 11. Sharanyagumulapuram,*etal*. Stability indicating rp-hplc method development and validation for the simultaneous estimation of eprosartanmesylate and hydrochlorothiazide in bulk and tablet dosage form. International Journal of Pharmacy and Pharmaceutical Sciences.(6)2;2014.446-451.
- 12. Topalli Srinivasu1 *et al.* Development and validation of a new stability indicating RP-HPLC method for the determination of Eprosartan and Hydrochlorothiazide. Journal of Chemical and Pharmaceutical Sciences.(10)2;2017;790-797.
- 13. Lara F Tutunji,*et al.* Simultaneous determination of irbesartan and hydrochlorothiazide in human plasma using HPLC coupled with tandem mass spectrometry: Application to a bioequivalence study. Journal of Bioequivalence & Bioavailability.2015.
- 14. ArvindKumarm,*et al.* Method Validation for Simultaneous Quantification of Olmesartan and Hydrochlorothiazide in Human Plasma Using LC-MS/MS and Its Application Through Bioequivalence Study in Healthy Volunteers. Pharmacol.2019.