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ABSTRACT 

HER2 positive breast cancer is most common malignancy in women globally. Aberrant 

behavior of HER2 kinase protein is a hallmark of tumorigenesis, and as a result it has been 

considered as an emerging potential drug target for breast cancer therapy.  In the present 

investigation a series of N-substituted rhodanine derivatives (33 compounds) were subjected to 

2D-QSAR studies with the aid of genetic algorithm (GA) method to identify the essential 

structural features that responsible for cytotoxic activity. Based on the results, the cytotoxic 

activity of N-substituted rhodanine derivatives can be successfully explained in terms of two-

dimensional (ATSC7v), and three-dimensional (geomRadius and RDF45i) descriptors. The 

obtained model was vigorously validated and passed all validation metrics (R2
train = 0.913, R2

adj 

= 0.899, Q2
LOO = 0.870, R2

test = 0.848). Importantly, the model quality was good based on mean 

absolute error (MAE) criteria and the results were consistent with proposed limits by Golbraikh 

and Tropsha. Molecular docking study of the active compounds (ligands 4, 16, and 27) revealed 

the formation of hydrogen and hydrophobic interactions within the active site of HER2 protein. 

 

Keywords: HER2 proteins, breast cancer, cytotoxic agents, rhodanine, molecular docking, 2D-

QSAR. 

 

 

 

 

 

 

 

 

 

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 7 (July) - 2022

http://ymerdigital.com

Page No:1



1. INTRODUCTION 

Cancer is the second top cause of death globally after cardiovascular diseases. It was 

estimated that 9.6 million deaths in 2018 were due to cancer [1, 2].  Cancer is considered the 

leading cause of death in higher-income countries while the second in low and middle-income 

countries. The most common types of cancer in men are lung, prostate, colorectal, stomach, and 

liver cancer. In women, cancer prevalence is highest in the breast, colorectal, lung, cervical, and 

thyroid, respectively [3]. In a recent report of the American Cancer Society, breast cancer was 

classified as the most frequently diagnosed cancer and the leading cause of cancer death among 

females [4]. In terms of new cases, an estimated 2.1 million women were newly diagnosed, and 

626,679 women died with breast cancer [5]. The global incidence of breast cancer has been 

rising with annual increases of 3.1% [6, 7]. The human epidermal growth factor receptor (EGFR) 

protein-tyrosine kinases plays a key role in cell proliferation, survival, differentiation, and 

metabolism. Disturbances in these vital molecular processes are a hall mark of tumorigenesis [8]. 

The EGFR family composed of four main members such as ErbB1 (HER1), ErbB2 (HER2), 

ErbB3 (HER3), and ErbB4 (HER4) [9, 10]. Several cancers are connected with the amplification 

or increased expression of EGFR family proteins including head and neck, lung, stomach, 

colorectal, bladder, uterine and pancreatic cancers [11]. In recent years, the Food and Drug 

Administration (FDA) has been approved thirty-six small-molecule kinase inhibitors for the 

treatment of many cancer diseases with wide structural diversity [12]. Therefore, protein kinases 

have been recognized as an attractive therapeutic target for the discovery of anti-cancer drugs, 

and thus the development of novel kinase targeting agents is very promising in the field of 

oncology.  

Rhodanine (2-thioxothiazolidin-4-one) is considered as privileged scaffold in drug 

discovery and receiving considerable attention in medicinal chemist community due to their 

broad therapeutic activities such as antimicrobial [13-15], antiviral [16], antidiabetic [17] and 

anti-cancer activity [18]. Additionally, rhodanine-based molecules have been popular as small 

molecule inhibitors of numerous targets such as HCV NS5B protease [19], HCV NS3 protease 

[20], aldose reductase [21], β-lactamase [22], UDP-N-acetylmuramase/L-alanine ligase [23], 

fungal protein mannosyl transferase-1 (PMT1) [24],  cathepsin-D [25], anthrax lethal factor 

protease [26], histidine decarboxylase [27], JNK-stimulating phosphatase-1 (JSP-1) [28] and 

phosphodiesterase (PDE-4) [29]. Among the thiazolidine derivatives, numerous compounds 

containing thiazolidine-2,4-dione and rhodanine have been recognized as new potential anti-

cancer agents. For example, GSK1059615 (see Fig. 1) is a potent, reversible, ATP-competitive, 

thiazolidinedione inhibitor of PI3K α. It inhibits phosphatidylinositol 3-kinase (PI3K) signaling, 

induces G1 arrest and apoptosis, especially in breast tumor cells [30, 31]. The diverse biological 

activities of rhodanine and 2,4-thiazolidinone derivatives has attracted attention of medicinal 

chemists to explore this scaffold in the discovery of new potential anti-cancer agents [32-36]. 

Quantitative structure activity relationship (QSAR) modeling is a part of computer-aided 

drug design and plays a pivotal role in lead optimization strategy of drug discovery program 

[37]. QSAR model is a mathematical linear equation, which explains the relationship between 
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descriptors (computed properties of chemical structures under study) as an independent variable 

and a response (experimental activity/toxicity/property) as a dependent variable for set of 

structurally similar molecules under study [38, 39]. Once a QSAR model is established, it is very 

useful for exploring the structural features responsible for a biological activity and also feeds 

essential molecular information to design new molecules with enhanced biological activity of our 

interest. Additionally, the built QSAR model can be applied to predict the biological activity of 

newly designed molecules. Therefore, QSAR modeling speeds up the process of development of 

new drug molecules by saving time, money and more importantly animal sacrifice. The purpose 

of the present study was to investigate the relationship between the physicochemical parameters 

responsible for the cytotoxic activity of N-sustituted rhodanine derivatives.  The 2D-QSAR 

analysis was carried out by employing genetic algorithm method for descriptor optimization and 

multiple linear regressions (MLRs) analysis for QSAR models development. To the best of our 

knowledge, till date no 2D-QSAR study has been reported on N-substituted rhodanine 

derivatives as cytotoxic agents as discussed in this article. Hence, we have attempted to develop 

some robust statistically significant 2D-QSAR model for rhodanine derivatives to correlate 

cytotoxic activity to its physicochemical properties. The information generated from the 2D-

QSAR could be effective to understanding the structure activity relationships of the compounds 

under consideration and subsequently design a new anti-cancer lead compound. In structure 

based drug design, molecular docking approach can be help full in predicting the intermolecular 

interactions between a small molecule and a protein or enzyme at atomic level. This study 

focused on combining both 2D-QSAR modeling and molecular docking approaches to the 

assessment of thirty-three N-substituted rhodanine derivatives as cytotoxic agents. 

 

2. MATERIALS AND METHODS 

2.1. Dataset 

Thirty three (33) already synthesized N-substituted rhodanine derivatives with well define 

activity were obtained from the literature for QSAR study [40]. The biological activity data in 

the form of % cytotoxicity values were converted to their natural logarithms (%Cytotoxicity = 

lnCyt) in order to reduce skewness in the activity values used for the 2D-QSAR study. The 

chemical structures and activity values (lnCyt) of these 33 compounds are represented in Table 

1.  

2.2. Structure Optimization and Molecular Descriptor Calculation 

The structure optimization was performed using CS Chem Office version 8.0 software 

[41]. The molecular structures of the N-substituted rhodanine derivatives were properly drawn 

using ChemDraw Ultra module of the software. The sketched structures without any errors were 

transferred to Chem3D Ultra module of the same software to create the three-dimensional (3D) 

structure. These 3D structures were then subjected to energy minimization using molecular 

mechanics (MM2) server until the root-mean square (RMS) gradient value became smaller than 

0.1 kcal/molǺ. All energy minimized molecules were again refined using Austin model-1 (AM1) 

method using the restricted closed-shell wave function of the molecular orbital package 
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(MOPAC) module until the RMS gradient value became 0.0001 kcal/molǺ. Geometrical 

optimization was carried out to obtain the lowest energy structure using EF (Eigenvector 

Following) routine. Most stable structure for each compound was generated and saved as SDF 

format, and then exported to PaDEL descriptors software which is a product of Pharmaceutical 

Data Exploration Laboratory, developed by Yap Chun Wai [42]. The total pool of 1875 

descriptors were calculated which includes electrostatic, topological, spatial, autocorrelation, 

geometrical, constitutional, and thermodynamic descriptors.  

 

2.3. Data Pretreatment 

After calculating the descriptors, data pretreatment was done using a software tool (Data 

Pretreatment GUI 1.2 software) [43]. The pool of  1875 descriptors were subjected to data 

pretreatment to remove constant (variance cut-off  < 0.0001) and inter-correlated descriptors 

(correlation coefficient cut-off ≥ 0.90) in order to minimize redundant information. If multiple 

descriptors were inter-correlated, the descriptor with a higher correlation with biological activity 

was considered for study. After data pretreatment of the descriptors matrix, 745 descriptors 

remained for 2D-QSAR model development. 

 

2.4. Dataset Division  

In this study, user friendly QSAR modeling software “QSARINS (QSAR-Insurbia)” 

developed at the University of Insurbia was used for dataset division, model development and 

validation. This software allows to generate multiple linear regression (MLR) based QSAR 

models, by employing genetic algorithm for descriptor selection. This tool is very useful in 

computing QSAR modeling, which employs an exhaustive double cross-validation approach to 

select an optimal model for small dataset QSAR modeling [44-46]. After data pretreatment, data 

set division into training and test sets is considered as most important step in QSAR study 

because the training and test set should cover the both active and inactive compounds for 

uniform data sampling. The data set was divided into a test set of 10 compounds (1, 3, 8, 11, 12, 

17, 18, 19, 23, and 30), and training set of 23 compounds (2, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 20, 

21, 22, 24, 25, 26, 27, 28, 29, 31, 32, and 33) by random splitting method in proportion of 70 to 

30 % through response (activity) sampling automatically by the software. 

 

2.5. Variable Selection 

Variable (descriptor) selection process is a key step in development of best QSAR model 

from the pool of molecular variables, because only few of them correlates well with biological 

activity with high statistical significance. Therefore, we adopted GFA and MLR approaches for 

best variable selection as well as for the development of QSAR models. 

 

2.5.1. GFA Method 

GFA (genetic function algorithm) is a search optimization process based on the theory of 

biological evolution. GFA evolved from algorithms known as (i) Holland’s genetic algorithm (ii) 
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Friedman’s multivariate adaptive regression splines (MARS) algorithm [47, 48]. GFA in 

QSARINS software executes in the following way: Initially, N regression equations were 

generated randomly with two distinct variables from the available dataset (set at 500 by default 

in QSARINS software) then pairs of “parent” equations were chosen randomly from this set of 

500 equations and random crossovers were performed to generate progeny equations. The 

process repeated several times until a reasonable convergence was obtained. The equations 

usually evaluated by fitness score using inbuilt fitness functions such as LOF, Q2
LOO, R2adj, and 

RMSEcv. In the present study, Friedman’s lack of fit (LOF) score was used to assess the fitness of 

each progeny equation. LOF score penalizes over fitted models and estimates suitable number of 

variables in the equation. The lack of fit is calculated by using the following formula (1): 

Lack of Fit = LSE / [1- (c + dp) / m]2  

(1) 

Where, m = number of samples in the training set, c = number of basis functions, d = 

smoothing parameter, p = number of independent variables, and LSE = least square error. 

 

2.6. Construction of QSAR Model  

The 2D-QSAR model was constructed by employing multiple linear regression (MLR) 

method using selected variables. The MLR is the traditional and standard approach for 

multivariate data analysis, it was used to study the relation between one dependent variable 

(biological activity) and several independent variables (molecular descriptor) [49, 50]. In this 

study, best model was selected based on statistical quality and with minimum number of reliable 

descriptors which able to explain variance in the activity. 

 

2.6. QSAR Model Validation 

2.6.1. Internal validation 

The developed QSAR models were evaluated using the following statistical fitting 

parameters: correlation coefficient (R); squared correlation coefficient (R2); R2
adj; SEE (standard 

error of estimate); PRESS (predicted residual error sum of squares); SDEP (standard deviation 

error of prediction); F-test for statistical significance, Kxx ( global correlation among descriptors) 

and LOF (lack of fit). The regression coefficient R2 is a relative measure of fit by the regression 

equation, and it represents the variation in the observed data that is explained by the regression. 

Furthermore, the R2 values are proportional to the number of descriptors in the model which is 

not reliable in determining the predictive response of the model. The R2
adj was evaluated based 

on following formula (2):  

R2
adj  =   

𝑅2−𝑝(𝑛−1)

𝑛−𝑝−1
 

(2) 

Where p is the number of the descriptor in the equation and n is number of compounds in 

the training set. The number of descriptors in the QSAR model is acceptable when the difference 

between R2 and R2
adj value is less than 0.3 [51]. The F-test reflects the ratio of the variance 

explained by the model and the variance due to the error in the regression. High values of the F-
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test indicate that the model is statistically significant. The low standard error of estimate (SEE) 

shows absolute quality of fitness of the model. PRESS is the sum of overall compounds of the 

squared differences between the actual and predicted values for the independent variables. The 

small value of PRESS statistics indicates better prediction ability of QSAR equation. The results 

of fitting parameters of developed QSAR model is represented in Table 5. 

The QSAR model generated was internally validated using cross-validation technique 

[52]. In essence, this technique provides adequate information about the predictive reliability of 

the QSAR equation. The cross-validated Q2
LOO was evaluated based on following formula (3): 

 

Q2
Loo = 1 − [

∑(𝑌𝑜𝑏𝑠−𝑌𝑝𝑟𝑒𝑑)2

∑(𝑌𝑜𝑏𝑠−𝑌𝑡𝑟𝑎𝑖𝑛)2] 

  (3)  

Where, Ytrain = average observed the concentration of training set, Yobs = observed 

concentration, and Ypred = predicted concentration in the training set. The squared correlation 

coefficient (R2
pred) was determined for the comparison between the predicted concentration by 

the QSAR equation and observed concentrations from the experiment. However, a QSAR model 

is considered to be predictive, if the following conditions are satisfied: R2 > 0.6, Q2 > 0.6 and 

R2
pred > 0.5 [52]. The cross validated Q2

LOO is ordinarily smaller than the R2 value of the QSAR 

model because of its diagnostic means of evaluating the predictive power of the model [53]. In 

addition, it is important to note that good R2 and Q2
LOO values are not enough measures for 

validating the model. Therefore, more parameters must be established to point out the predictive 

capability of the models. 

The developed QSAR models were further evaluated using the following statistical 

internal validation parameters: RMSEtrain (root-mean-square error of the training set); RMSEcv 

(root-mean-square error of the training set estimated through cross validated leave one out 

method); RMSEext (root-mean-square error of the external validation set); CCC (concordance 

correlation coefficient) of the training set (CCCtrain), LOO cross validated concordance 

correlation coefficient of test set (CCCcv), and external validation set (CCCext) [54],  and 

PRESScv (predictive residual sum of squares by employing cross-validated LOO method in the 

training set, and in the external prediction set (PRESSext). The robustness of the model was 

validated by computing scaled r2
m metrics [55] such as r2

m (train)
 and Δr2

m (train) for internal 

validation; r2
m (test), and Δr2

m (test)
 for test set validation. The calculation of r2

m metrics is based on 

the idea that the classical metrics of internal (Q2) and external (R2
pred) validation largely depend 

on the mean value of the response parameter for the training set compounds [56]. Thus, the 

values of these metrics become dependent on the range selected for the response parameter and 

fail to reflect truly the deviation of the predicted response values from the corresponding 

observed data especially when the y-range of the dataset is quite wide [57]. Acceptable values for 

these metrics may be obtained as long as the mean response of the training set compounds 

maintains sufficient distance from the observed data for both the training and the test set 

molecules, even when poor predictions for some of the compounds in the two sets are present. 

Thus, large values of these metrics are not always indicative of the most significant model. To 
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obviate such errors, the modified r2 (r2
m) metrics were reported by Roy and Roy [55]. The r2

m 

metric may be calculated for both the training and the test sets in addition to the total dataset 

based on the leave-one out (LOO) predicted (training set) and/or predicted (test set) response and 

the corresponding observed data. Here, two different variants of the r2
m metrics are calculated to 

assess the predictive ability of the model: r2
m and Δr2

m [56]. It has been suggested that for a 

model to be considered as predictive one, the value of r2
m should be more than 0.5 and the Δr2

m 

value should be lower than 0.2 [58]. In the present study we also employed some other statistical 

validation parameters (external prediction) such as Q2F1, Q2F2, and Q2F3, to assure the 

significance of the developed model [59]. The internal and external validation results are given 

in Table 6 and 7. 

The Y-randomization test is a widely used approach to test the model robustness. In this 

approach the steps followed during the randomization test are (i) repeatedly scrambling the 

activity data in the training set molecules, (ii) using the randomized data to generate QSAR 

models, and (iii) comparing the resulting scores with the score of the original QSAR model 

generated with non-randomized data. If the activity prediction of the random model is 

comparable to that of the original model, the set of observations is not sufficient to support the 

model. The new QSAR models (after several iterations) would be expected to have low R2 and 

Q2
LOO values from the values of actual model. If the opposite happens, then an acceptable QSAR 

model cannot be obtained for the specific modeling method and data [60]. The results of Y-

randomization test is given in Table 8.  

 

2.6.2. External Validation 

In the external validation phase, the QSAR model assessed for acceptability criteria proposed 

by Golbraikh and Tropsha for robustness with good predictive potential [53, 61]. 

a. Q2 > 0.5 

b. R2
pred  > 0.6 

c. r2-r2
0/r

2  < 0.1 

d. 0.85 < k < 1.15 or 0.85 < k' < 1.15 

Where, r2 = squared correlation coefficient between the observed and predicted activities, r2
0 = 

squared correlation coefficient between the predicted and observed activities, k and k' are the 

regression slopes passing through the origin. The R2
pred was evaluated based on following 

formula (4): 

R2
pred = 1 − [

∑(𝑌𝑝𝑟𝑒𝑑 𝑡𝑒𝑠𝑡−𝑌𝑜𝑏𝑠 𝑡𝑒𝑠𝑡)2

∑(𝑌𝑜𝑏𝑠 𝑡𝑒𝑠𝑡−𝑌𝑡𝑟𝑎𝑖𝑛)2 ]  

(4) 

Where, Ypredtest and Yobstest are the predicted and observed activity of test set compounds 

respectively. Ytrain  is the average values of observed activity of the training set compounds. 

Golbraikh and Tropsha acceptable model validation parameters and their threshold values of the 

model-1 are shown in the Table 9. 

Further, the model prediction quality (training and test sets) was studied using the mean 

absolute error (MAE)-based criteria [62, 63]. The statistical metrics like MAEtrain (mean absolute 
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error of the training set), and MAEext (mean absolute error of the external validation set) were 

computed using a software tool (XternalValidation-Plus 1.1) [43]. The validation tool 

categorizes the model prediction quality into ‘Good’, ‘Moderate’ and ‘Bad’ considering the 

values of MAE and standard deviation of the absolute error (AE) values (σAE) as defined as 

below: 

(i) Good predictions:  

MAE  ≤ [0.1 X  training set range AND MAE] + [3 X σAE ≤  0.2 X training set range] 

(ii) Bad predictions: 

MAE > [0.15 X training set range OR MAE] + [3 X σAE > 0.25 X training set range] 

(iii) Moderate predictions:  

The predictions which do not fall under either of the above two conditions are considered 

as of ‘moderate’ quality. The results of MAE based criteria are shown in Table 10. 

 

2.6.3. Development of Applicability Domain (AD) 

Applicability domain (AD) analysis helps us to understand the reliability of built QSAR 

model predictions in the response and chemical structure space. This analysis is used to detect 

structural and response outliers from the test set and training set respectively [64]. The leverage 

approach of determining the applicability domain also known as Williams plot was obtained by 

plotting a scatter plot of standardized residual in the Y-axis and leverages in the X-axis of both 

training, and test sets. By definition, leverage value [65, 66] is determined based on following 

formula (5): 

Leverage (i) = X(i) (xTx)-1X(i) 

(5) 

where X(i) represents the vector of descriptors of compound (i), X represents the descriptors 

matrix, and xT represents matrix transpose of X. The threshold leverage (F*) is given by the 

formula (6): 

𝐹 ∗=
3(𝑚 + 1)

𝑝
 

(6) 

where p is the number of molecules in the training set and m is the number of molecular 

descriptors used in the model. In addition, compounds with higher leverage scores which are 

greater than threshold leverage (i > F*) tend to have unreliable predictions. However, 

compounds whose leverage scores are less than the threshold score (i < F*) and the standardized 

residuals are not greater than ± 3α (3 standard deviation units) are said to fall within the 

applicability domain.  

The statistical metrics and their mathematical definitions used in this QSAR study can be 

found in the literature [55, 67].   
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2.7. Molecular Docking Study 

Many human cancers are result of aberrant signaling and over expression of human 

epidermal growth factor receptor 2 (HER2) of EGFR family having tyrosine kinase activity. On 

the cell surface, HER proteins exists as monomers and they dimerizes itself, and with other 

family members upon binding of ligand to their extracellular domains. The dimer undergoes 

transphosphorylation in cytoplasm, and aberrantly stimulates downstream secondary messenger 

pathways like phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), mitogen-activated protein 

kinase (MAPK), protein kinase C (PKC) and crosstalk’s with other membrane signaling 

pathways which eventually leads to cell proliferation and oncogenesis [68-70]. Inhibition of 

kinase activity of these enzymes leads to the induction of cell death in many solid tumors 

including breast and lung cancers. Molecular docking is an important tool in computer-aided 

drug design and structural molecular biology to predict the predominant binding mode of a 

ligand with a known 3D-protein structure. In the present investigation, the energy minimized 

structures of most active compounds (4, 16, and 27), and crystal structure of the Kinase domain 

of Human HER2 (erbB2 with PDB ID: 3PP0) were used for molecular docking studies [71]. The 

docking simulation was carried out using Molegro Virtual Docker (MVD 2013.6.0 for Windows 

32 program, Molegro Bioinformatics Solutions, Demark, 2013) [72]. The inbuilt cavity detection 

method was used to determine the possible active site(s)/cavities for the target protein (3PP0). 

Among them one active site was selected based on the literature and utilized in further docking 

studies [73]. Prior to the docking, the MVD software helps in assigning the missing charges, 

hybridization states, bonds and bond orders of the ligands in the study. The MolDock score 

(GRID) function was used with a grid resolution of 0.30Ǻ and a binding site radius of 15Ǻ. The 

MolDockSE searching algorithm was employed, 10 runs using a maximum of 1500 iterations 

with a maximum population size of 50 was applied. The energy threshold used for the minimized 

final orientation is 100. The maximum 300 steps with a neighbor distance factor 1 were selected 

as simplex evolution parameters. The poses are sorted according to MolDock score and rerank 

score and the top-scoring (most negative, thus favourable to binding) poses are kept after 

execution of docking. Subsequently, the docking results were visualized using the same MVD 

software to study the protein and ligand interactions. The docking results are represented in 

Table 11. 

 

3. RESULTS AND DISCUSSION 

 A 2D-QSAR analysis was performed to explore the structure-activity relationship of N-

substituted rhodanine derivatives acting as cytotoxic agents against MCF-7 breast cancer cell 

lines. The data set of 33 molecules was divided into a training set of 23 molecules and a test set 

of 10 molecules based on structural diversity and activity range. In order to select the 

predominant descriptors that will affect the cytotoxic activities (lnCyt) of these compounds, 

stepwise multiple linear regression analysis was performed taking the calculated 2D descriptors 

as independent variables and lnCyt as dependent variable. The training set molecules was then 

used to generate the 2D-QSAR models, while the test set molecules were selected for model 
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validation. The GA-MLR analysis led to the derivation of one final model with three descriptors 

and obtained the following model-1: 

lnCyt = -1.33468(+/-0.47126)+0.00062(+/-0.00011)ATSC7v +0.64348(+/-0.05625) geomRadius  

+ 0.03074(+/-0.00901) RDF45i 

(Model-1) 

The Table 2 represents the description about descriptors used in model-1.  The correlation 

between the three descriptors was evaluated using correlation matrix (Table 3) and accepted after 

considering the correlation values. The highest value was obtained for the RDF45i and ATSC7V 

descriptors (0.204).  

  The model-1 is a triparametric equation and has good correlation between the cytotoxic 

activity and descriptors (ATSC7v, geomRadius and RDF45i) as indicated by the high correlation 

coefficient R (0.956). In QSAR regression models, the minimum acceptable R2 is ≥ 0.60 

(explains 60% variance in activity). Squared correlation coefficient of model-1 (R2 = 0.913) 

explains 91% variance in cytotoxic activity of the tested compounds. The difference between R2 

and R2
adj  is less than 0.3 which indicates the number of descriptors involved in the QSAR model 

is acceptable. RMSE evaluates the goodness of fit (variability not explained by the regression 

model) than correlation coefficient (R). Very low RMSEtrain (0.107) of model-1 indicates a 

perfect fit to the data. The model displayed high F-test value (66.74) with overall significance 

level better than 99%, which shows statistical significance of the model in terms of relationship 

between descriptors and the biological activity. The potential for predictive application of the 

model was confirmed by using leave-one-out (LOO) cross validation method to ensure the 

robustness of the model and it is usually denoted as Q2
LOO. The minimum acceptable value for 

cross validated squared correlation coefficient (Q2
LOO) is ≥0.5 (which indicates 50% variation in 

predictability) and the R2-Q2
LOO value should be less than 0.3 (higher value indicates overfitting 

of the regression model). The high Q2 value (0.870) and R2-Q2
LOO value (0.045) of model-1 

reflects good internal predictive ability of the QSAR model in the present study. The statistical 

parameters like Kxx (global correlation descriptors) and ΔK (difference between Kxx and Y 

responsible variable) is used to detect the overfitting of the QSAR model due to inter-correlation 

between the descriptors. The low kxx and  ΔK ≥ 0.05 implies no chance correlation between 

descriptors.  The generated model was used to predict the test set data, and the predicted results 

are given Table 4. The predicted values for lnCyt for the compounds in the training and test set 

using the model-1 were plotted against the experimental lnCyt values in Fig. 2. As can be seen 

from Table 4 and Fig. 2, the calculated values for the lnCyt are in good agreement with those of 

the experimental values. Also, the plot of the residual for the predicted values of lnCyt for both 

the training and test sets against the experimental lnCyt values are shown in Fig. 3. As can be 

seen the model did not show any proportional and systematic error, because the propagations of 

the residuals on both sides of zero is random.  
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3.1. QSAR Model Validation 

A summary of the results of the internal and external validation metrics for model-1 are 

presented in Table 6 and 7. The developed QSAR model in the present study was accepted after 

satisfying the following conditions: R2
ext  ≥  0.60, RMSEcv and MAEcv close to zero, RMSEtrain <  

RMSEcv , and CCCext  ≥ 0.85. The model-1 showed r2
m (Train), r

2
m (Test) values greater than 0.50 and 

the value of R2
 YScr is greater than Q2YScr, which shows the good predictive ability of the model. 

The Q2
F1 /R

2
pred (0.846), Q2

F2 (0.807), and Q2
F3 (0.916) parameters reflects the true model quality. 

Leave-many-out (LMO) cross validation (Q2
LMO) method was also used to test the real 

robustness of the developed model. The principle involved in this technique is same as like that 

of Q2
LOO and in this process, the model behavior assessed after a large percentage of compounds 

(30%) are randomly excluded iteratively from the training set. A new model is built after 

iteration to predict the biological activity of the removed compounds. It is beloved that the 

average of Q2
LMO should be close to Q2

LOO value of original model. The model-1 expressed a 

smallest difference between Q2
LOO  (0.870) and Q2

LMO (0.859). 

In order to assess the robustness of the model, the Y-randomization test was applied in 

this study, and the values shown in the Table 8. The developed model demonstrates significant 

difference in the average R2
r and Q2

r values of random models compared to the R2 and Q2 values 

of the original model which indicates that original model was not obtained due to a chance 

correlation or structural dependency in the proposed model.  The cRP
2 value (0.872) is 

significantly better than the required threshold value (0.50) consequently the model-1 can be 

considered as a robust model with both high statistical significance and excellent predictive 

ability. 

The quality of predictions based on the MAE-based criteria for the 100% data can 

mislead the developed model predictivity. In order to obviate this possibility, the MAE based 

criteria were determined after removing 5% data of compounds with high absolute error values, 

and the results were found to be “GOOD” for training, and test sets respectively. 

The selected model have passed the evaluation criteria proposed by Golbraikh and 

Tropsha [53, 61] and confirmed the robustness, and stability of the proposed model.   

The applicability domain of the model-1 was evaluated by leverage approach to detect 

the possible outliers using the Williams plot (Fig. 4). In the present study, the number of 

descriptors is 3 and number of compounds in the training set is 23, the critical leverage (h*) 

value is [3*(3+1)]/23 = 0.5217. The Williams plot clearly demonstrates that all the compounds in 

the training and test set are inside AD, therefore there is no influential compound in the data set. 

Furthermore, the QSAR model was assessed based on the multi-collinearity among the 

descriptors present in the model-1 by computing the variation inflation factor (VIF) using the 

below equation (7): 

VIF = (1-R2)-1 

(7) 

In the above equation (7), R2 represents the correlation coefficient of the regression between 

variables in the model-1. If VIF equals to 1, then no inter-correlation exists for each variable; 
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models with a VIF value in the range of 1-5 can be accepted; if VIF is greater than 5, the related 

models are unstable and must be discarded [74]. Table 3 shows the correlation matrix and VIF 

scores of the three descriptors in the model-1. The VIF scores are within the acceptable range. 

Thus, there is no colinearity among the descriptors in the model-1. Therefore, the developed 

model-1 is considered as stable, statistically significant, robust and predictions of the cytotoxic 

values for new compounds made with this model are reliable. 

 

3.2. Interpretation of Descriptors 

By interpreting the descriptors contained in the QSAR model, it is possible to gain some 

insights into factors, which are related to the cytotoxic activity. It is observed that ATSC7v, 

geomRadius, and RDF45i are the best descriptors in the establishment of the QSAR model-1 for 

N-substituted rhodanine derivatives. For this reason acceptable interpretation of the selected 

descriptors is provided below. The brief descriptions of descriptors [75] are shown in Table 2.  

ATSC7v (Centered Broto-Moreau autocorrelation - lag 7 / weighted by van der Waals 

volumes) belongs to the 2D autocorrelation descriptors [76]. The ATSC7v descriptor is a graph 

invariant describing how the property considered is distributed along the topological structure. It 

indicates that changing the van der Waals volume seven vertices apart affect the biological 

activities of the molecules, thus changing the type of atoms or increase in the complexity of 

vertices that are seven bonds apart will affect the cytotoxic activity of the molecules. The 

positive regression coefficient of ATSC7v descriptor indicates that it contributes positively to the 

cytotoxic activity, Which means that van der Waals volume seven vertices apart is favorable to 

the cytotoxicity.  For instance, this feature is clearly observed in the most active compounds, like 

4, 16, and 27 in the series as shown in Fig. 5. 

geomRadius is a  Petitjean shape index descriptor classified as 3D geometrical 

descriptors. This descriptor accounts for the geometrical radius (minimum geometric 

eccentricity) of the molecular shape. “The molecular shape is a dynamic property that depends 

upon energy. The higher the energy the larger the family of nuclear configurations and, 

consequently, the more molecular shapes are available for the molecule” [77].The geometric, or 

three-dimensional (3D), shape of a molecule is known to be of crucial importance in determining 

its biological properties. As suggested by the model-1 equation, this descriptor contributes 

positively and corroborates well with the descriptor value and shape of R1 substituents, i.e., as 

the value of R1 substituent increases, the activity values are found to increase (compounds 4, 16, 

and 27) and the value of R1 substituent decreases, the activity values are found to decrease 

(compounds 10, 22, and 33) as demonstrated in Fig. 5. 

RDF45i descriptor is a radial distribution function at 4.5 interatomic distance weighted 

by relative first ionization potential [78]. RDF45i descriptor is an independent of the number of 

atoms, 3D arrangement of the atoms, and the size of a molecule. This descriptor is an invariant 

against translation and rotation of the entire molecule. In addition, the RDF descriptors can 

provide information about specific atom types, distribution of interatomic distances, bond 

distances, ring types, planar and non-planar systems, and steric hindrance to describe 
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structure/activity properties of molecules. The positive sign of the coefficient of RDF45i 

suggests that the cytotoxic activity is directly related to this descriptor. It has been found that the 

compound 11, 13, and 24 show higher cytotoxic activity as their corresponding RDF45i value 

increases while 5-benzyidene compounds (9, 21, and 32) show low cytotoxic activity due to less 

descriptor value (see Fig. 6). 

 

3.3. Molecular Docking Studies 

During the initial process of the study, the internal ligand (03Q), and Erlotinib were first 

docked with the binding site of the receptor, and the same binding site with same dimensions of 

the cavity were used to compare the docking results of the compounds 4, 16, and 27. The 3D and 

2D binding modes of docked compounds is shown in Fig. 7 and 8. The molecular docking study 

suggests that the internal ligand (03Q) interacted with the active site amino acid residues 

(Met801, Thr862,  and Asp863) through hydrogen bonding interactions and also makes 

hydrophobic interactions with the side chains of Thr862, Glu770, Met774, Ser783, Leu785, 

Leu790, Leu796, and Phe864 [79]. The commercially available anti-cancer drug “Erlotinib” 

displayed hydrogen bonding interactions with Asp863 and Thr862 in the active site. The 3D and 

2D binding modes of internal ligand (03Q), and reference drug “Erlotinib” is shown in Fig. 8. 

Our study revealed that among the docked compounds, the best docking energy for HER2 was 

exhibited by internal ligand (03Q) with a moldock score -178.77 followed by Erlotinib (-135.91), 

compound 27 (-131.91), compound 4 (-125.530), and compound 16 (-118.61). The compounds 

4, 16, and 27 interacted with active site amino acid residues (Thr862, Asp863) through hydrogen 

bonding interactions and also shows hydrophobic interactions with the side chains of Leu796, 

Met774, Leu785 for compound 4, Leu796, Met774 for compound 16, and Leu796, Phe1004 for 

compound 27 respectively.  

 

CONCLUSION 

In the present study, we have attempted to develop MLR based 2D-QSAR model from 33 

diverse compounds having defined cytotoxic activity to investigate the molecular properties 

essential for the cytotoxic activity. The MLR based QSAR model was developed with simple, 

meaningful and easily interpretable descriptors such as ATSC7v, geomRadius, and RDF45i. The 

statistical metrics of the developed model showed that the model is robust, statistically 

significant with good predictivity based on both internal and external validation parameters. 

Molecular docking results further revealed that compounds (4, 16, and 27) showed interaction 

with the active residues (Met801, Thr862, and Asp863) in the binding site of kinase domain of 

HER2 receptor like the internal ligand (03Q) and Erlotinib. The Moldock scores of the active 

compounds (4, 16, and 27) were comparable with internal ligand (03Q) as well as with anti-

cancer drug (Erlotinib). In addition, the study of molecular interactions involved in binding is 

very important along with Moldock score to understand the binding mode pattern of any 

compound in the binding site.  Furthermore, the developed 2D-QSAR model can be used as good 
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model for prediction of activity of more potent analogs of N-substituted rhodanines as cytotoxic 

agents even before their synthesis and evaluation.   
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Table 1. Structure and cytotoxic activities of N-substituted rhodanine derivatives. 

 

Compound 

No 

R R1 % Cytotoxicity lnCyt 
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Cl

 OCH3  

 

 

 

 

62 4.127 
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Cl

 

OH

 

 

 

43 3.761 
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Cl

 

Cl

 

 

 

34 3.526 
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Cl

 

 

 

 

 

 

81 4.393 
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Cl

 

Cl

Cl  

 

 

 

 

47 3.85 
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Cl

 NO2  

 

 

 

40 3.688 
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Cl

 Cl  

 

 

 

 

45 3.806 
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Table 2. List of descriptors used in QSAR model. 

S.No Descriptors 

symbols 

Name of the Descriptor(s) Class 

1 ATSC7v Centered Broto-Moreau autocorrelation - lag 7 / 

weighted by van der Waals volumes 

2D 

2 geomRadius Geometrical radius (minimum geometric eccentricity) 3D 

3 RDF45i Radial distribution function - 045 / weighted by relative 

first ionization potential 

3D 

 

 

Table 3. Correlation matrix and Variation inflation factor (VIF) of the descriptors. 

 ATSC7v geomRadius RDF45i VIF 

ATSC7v 1   1.06 

geomRadius 0.113 1  1.02 

RDF45i 0.204 -0.024 1 1.05 

 

 

Table 4. Observed and predicted activity of N-substituted rhodanine derivatives. 

Comp No 

Observed 

Activity 

Predicted 

Activity Residual 

1* 4.127 4.256 -0.129 

2 3.761 3.753 0.008 

3* 3.526 3.696 -0.170 

4 4.393 4.378 0.015 

5 3.85 3.859 -0.009 

6 3.688 3.583 0.105 

7 3.806 3.707 0.099 

8* 3.688 3.605 0.083 

9 3.637 3.536 0.101 

10 3.135 3.366 -0.231 

11* 4.11 4.168 -0.058 

12* 4.007 4.078 -0.071 

13 4.06 4.019 0.041 

14 3.663 3.581 0.082 

15 3.43 3.597 -0.167 
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16 4.343 4.181 0.162 

17* 3.526 3.529 -0.003 

18* 3.761 3.780 -0.019 

19* 3.713 3.607 0.106 

20 3.663 3.531 0.132 

21 3.33 3.425 -0.095 

22 2.995 2.892 0.103 

23* 3.912 3.865 0.047 

24 4.007 4.066 -0.059 

25 3.555 3.558 -0.003 

26 3.465 3.565 -0.100 

27 4.262 4.344 -0.082 

28 3.367 3.429 -0.062 

29 3.688 3.724 -0.036 

30* 3.401 3.594 -0.193 

31 3.295 3.484 -0.189 

32 3.465 3.323 0.142 

33 3.233 3.192 0.041 

*Represents the test compounds 

 

 

Table 5. Statistical Fitting Parameters 

S.No. Parameter Model-1 

1 R 0.956 

2 R2 0.913 

3 R2
adj 0.899 

4 SEE  0.119 

5 PRESS 0.267 

6 SDEP 0.135 

7 F 66.74(DF:3,19) 

8 LOF 0.021 

9 Kxx 0.0472 

10 ΔK 0.318 

11 RMSEtrain 0.1078 

12 CCCtrain 0.954 
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Table 6. Internal Validation Parameters 

S.No. Parameter Model-1 

1 Q2
LOO 0.870 

2 Q2
LMO 0.857 

3 R2Yscr 0.135 

4 Q2Yscr -0.288 

5 RMSEcv 0.132 

6 PRESScv 0.402 

7 CCCcv 0.932 

8 Avg r2
m (Train) 0.819 

9 Δr2
m (Train) 0.047 

 

  

 

Table 7. External Validation Parameters 

S.No. Parameter Model-1 

1 R2
ext 0.848 

2 Q2
F1 0.846 

3 Q2
F2 0.807 

4 Q2
F3 0.916 

5 RMSEext 0.106 

6 PRESSext 0.112 

7 CCCext 0.908 

8 r2
0 0.838 

9 r'20 0.845 

10 k 0.988 

11 k' 1.01 

12 Avg r2
m (Test) 0.790 

13 Δr2
m (Test) 0.099 

 

 

Table 8. Y-randomization study of the Model-1 

No of Y-randomization Rr R2
r Q2

r 

1 0.494 0.244 -0.187 

2 0.171 0.029 -0.314 

3 0.177 0.031 -0.433 

4 0.483 0.233 -0.134 

5 0.501 0.251 -0.201 

6 0.333 0.111 -0.277 
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7 0.200 0.040 -0.444 

8 0.181 0.033 -0.286 

9 0.176 0.031 -0.401 

10 0.133 0.018 -0.441 

Random Models Parameters 

Average Rr 0.346 

Average Rr
2 0.176 

Average Q2
r -0.204 

cRp
2 0.872 

 

 

Table 9. Golbraikh and Tropsha acceptable model validation parameters and their 

threshold values of the Model-1 

Parameter Formula Threshold 

Score 

Model 

Score 

Comment 

Q2 Q2
  = 1 − [

∑(𝑌𝑜𝑏𝑠−𝑌𝑝𝑟𝑒𝑑)2

∑(𝑌𝑜𝑏𝑠−𝑌𝑡𝑟𝑎𝑖𝑛)2] 

 

Q2 > 0.5 0.870 Passed 

R2
train Coefficient of determination for the 

plot of predicted versus observed for 

the training set by MLR 

R2
train > 0.6 0.913 Passed 

R2
test Coefficient of determination for the 

plot of predicted versus observed for 

the test set by MLR 

R2
test > 0.6 0.848 Passed 

r2
0 r2 at zero intercept  0.838  

r'20 r2 for the plot of observed versus 

predicted activity for the test set at 

zero intercept 

 0.845  

|r2
0-r'20|  |r2

0-r'20|< 0.3 -0.007 Passed 

k Slope of the plot of observed 

activity against calculated activity 

values at zero intercept 

0.85 < K < 

1.15 

0.988 Passed 

k' Slope of the plot of calculated 

activity against observed activity at 

zero intercept 

0.85 < k' < 

1.15 

1.01 Passed 

(r2- r2
0)/r

2  (r2- r2
0)/r

2 < 

0.1 

0.01211 Passed 

(r2- r'20)/r
2  (r2- r'20)/r

2 < 

0.1 

0.00372 Passed 
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Table 10. Error-based metrics and prediction quality for the training and test set employed 

in Model-1 

Set MAE 

(100%) 

σAE 

(100%) 

MAE 

(95%) 

σAE 

(95%) 

MAE + 3* σAE 

(95%) 

Prediction 

quality 

Training 0.0898 0.0610 0.0783 0.0497 0.2274 GOOD 

Test 0.0880 0.0622 0.0763 0.0530 0.2353 GOOD 

 

 

Table 11. Molecular docking results of compounds (4,16, and 27), internal ligand (03Q), 

and reference drug (Erlotinib) 

Name Structure MolDock 

Score 

(kcal/Mol) 

Rerank 

Score 

(kcal/Mol) 

Compound 4 

N
S

O

S Cl

 

-125.53 -99.58 

Compound 16 

N
S

O

S

 

-118.61 -99.46 

Compound 27 

N
S

O

S

 

-131.91 -111.95 

Internal 

Ligand (03Q) 

O N

NH

N

N

N
O OHCl

FF
F

 

-178.77 -147.62 

Reference 

Drug 

(Erlotinib) 

N

N

NH

CH

O

O

O

O
 

-135.31 -101.77 
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Fig. (1). Structure of GSK1059615 

 

 

 

 

 

 

 

 
Fig. (2). Scatter plot of observed vs. predicted activity of training set (blue) and test set (red) 
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Fig. (3). The standard residuals vs. observed activity for the training (blue) and test set (red) 
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Fig. (4). The scatter plot of standard residuals vs leverages (Williams plot) 
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Fig. (5). Contribution of ATSC7v, geomRadius descriptors in compounds 4, 10, 16, 22, 27 and 

33 
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Compound No: 9
RDF45i: 10.79
%Cytotoxicity: 38

Compound No: 21
RDF45i: 14.40
%Cytotoxicity: 28

N
S

O

S

N
S

O

S Cl

N

S

O

S

Compound No: 32
RDF45i: 9.71
%Cytotoxicity: 32

N
S

O

S

N
S

O

S Cl

N
S

O

S

HO

O

HO

O

HO

O

Compound No: 11
RDF45i: 15.59
%Cytotoxicity: 61

Compound No: 13
RDF45i: 21.25
%Cytotoxicity: 58

Compound No: 24
RDF45i: 20.94
%Cytotoxicity: 55

 
 

Fig. (6). Contribution of RDF45i descriptor in compounds 9, 11, 13, 21, 24 and 32
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Fig. (7). 3D and 2D binding modes of compounds 4, 16, and 27. 
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Fig. (8). 3D and 2D binding modes of internal ligand (03Q), and reference drug (Erlotinib). 
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