
 
 

SLIP EFFECTS ON MHD FREE CONVECTIVE FLOW 

OF A FLUID IN AN INCLINED CHANNEL 
 

Dr. Siva Shankara Rao Janapati 

Lecturer, Department of Mathematics, Government College (Autonomous) 

Ananthapuramu, A.P., INDIA. 

Email : sankarj07@gmail.com , Mobile : +91 8309452913 
Abstract :  

In this research paper, analysis the flow and heat transfer aspects of conducting fluid 

in an inclined channel with constant a pressure gradient. The governing equations are solved 

analytically valid for small Prandtl number(Pr) and Eckert number (Ec). The expressions for 

the velocity and temperature are obtained analytically. The effects of various physical 

parameters on the velocity and the temperature are discussed in detail.  
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1.  Introduction 
Channels are frequently used in various applications in designing ventilating and 

heating of buildings, cooling electronic components, drying several types of agriculture 

products grain and food, and packed bed thermal storage. Convective flows in channels 

driven by temperature differences of bounding walls have been studied and reported, 

extensively in literature. Free convection flows in vertical slots were discussed by Aung et al. 

(1972), Burch et al. (1985), Kim et al. (1990), Buhler (2003), Weidman (2006), Magyari 

(2007), Weidman and Medina (2008).  

Past few decades, the study of magnetohydrodynamics flow of electrically conducting 

fluids in electric and magnetic fields are of considerable interest in modern metallurgical and 

metal working process. The Hartmann flow is a classical problem that has important 

applications in MHD power generators and pumps, accelerators, aerodynamic heating, 

electrostatic precipitation, polymer technology, the petroleum industry, purification of crude 

oil and design of various heat exchangers. Especially the flow of non-Newtonian fluids in 

channels is encountered in various engineering applications. For example, injection molding 

of plastic parts involves the flow of polymers inside channels. During the last few years the 

industrial importance of non-Newtonian fluids is widely known. Such fluids in the presence 

of a magnetic field have applications in the electromagnetic propulsion, the flow of nuclear 

fuel slurries and the flows of liquid state metals and alloys. Sarparkaya (1961) have presented 

the first study for MHD Bingham plastic and power law fluids. The effect of transverse 

magnetic field in physiological type of flow, through a uniform circular pipe was studied by 

Ramachandra Rao and Deshikachar (1988). Garandet et al. (1992) have discussed buoyancy 

driven convection in a rectangular enclosure with a transverse magnetic field. Chamkha 

(1999) have analyzed free convection effects on three-dimensional flow over a vertical 

stretching surface in the presence of a magnetic field. Malshetty et al. (2001) have studied the 

effects of heat transfer and MHD on the convective flow of two fluids in an inclined channel. 

Umapathi et al. (2010)  have studied the effect of MHD on the convective couette flow of two 

fluids in an inclined channel.   

In many applications the flow pattern corresponds to a slip flow, the fluid presents a 

loss of adhesion at the wetted wall making the fluid slide along the wall. When the molecular 

mean free path length of the fluid is comparable to the distance between the plates as in nano 

channels or micro channels, the fluid exhibits non-continuum effects such as slip-flow was 

demonstrated experimentally by Derek et al. (2002). Beavers and Joseph (1967) were the first 
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to investigate the fluid flow at the interface between a porous medium and fluid layer in an 

experimental study and proposed a slip boundary conditions at the interface.  

In view of these, we investigated the MHD free convective flow of a Newtonian fluid 

in an inclined channel with the effect of slip. The expressions for the velocity and 

temperature are obtained analytically. The effects of various physical parameters on the 

velocity and the temperature are discussed in detail.   

 

2. Mathematical formulation 
The physical configuration (Fig. 1) consists of two infinite inclined parallel plates 

extending in the z  and x  -directions, making an angle    with the horizontal. The two plates 

are maintained at different constant temperatures 1T  and 2T  . A uniform magnetic field 0B  is 

applied normal to the plates. It is assumed that the magnetic Reynolds number is sufficiently 

small so that the induced magnetic field can be neglected, and the induced electric field is 

assumed to be negligible. The flow is assumed to be unidirectional, steady, laminar and fully 

developed. Under these assumptions, the governing equations of motion and energy are:   
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Fig. 1 The Physical model 

 

The boundary conditions are  

du
u
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=   ,   1T T=     at  0y =      (2.3) 

0u =  ,  2T T=     at  y h=      (2.4) 

Introducing the following non-dimensional variables   
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into Eqs. (2.1) and (2.2), we get (after dropping the bars) 
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is the Eckert number.     

The corresponding dimensionless boundary conditions  

du
u

dy
=   ,   1 =     at  0y =      (2.8) 

0u =  ,  0 =     at  1y =      (2.9) 

 

3. Perturbation Solution 
 Eq. (2.7) is non-linear and it is difficult to get a closed form solution. However for 

vanishing ( )PrEc = , the boundary value problem is agreeable to an easy analytical solution. 

In this case the equation becomes linear and can be solved. Nevertheless, small   suggests 

the use of perturbation technique to solve the non-linear problem. Accordingly, we write 

( )2

0 1u u u = + +           (3.1) 

( )2

0 1   = + +          (3.2) 

Substituting equations (3.1) and (3.2) into Eqs. (2.6) and (2.7) and boundary 

conditions (2.8) and (2.9) and then equating the like powers of  , we obtain 

3.1 System of order zero 
2
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Together with the boundary conditions  

0
0

du
u

dy
=   ,   0 1 =     at  0y =      (3.5) 

0 0u =  , 0 0 =     at  1y =      (3.6) 

3.2 System of order one 
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Together with the boundary conditions  

1
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1 0u =  , 1 0 =     at  1y =      (3.10) 
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3.3 Solution of order zero 

Solving Eqs. (3.3) and (3.4) using the boundary conditions (3.5) and (3.6), we get 

0 1 y = −            (3.11) 
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( )

1
1

sinh

sinh cosh

P MA M
c

M M M M





−
=

+
 , 

( )

2

1
2 2

cosh

sinh cosh

M A M P
c

M M M M

+
=

+
 and 

( )1 2 2

sin
1

Re

P Gr
A

M M


= − + +  . 

 

3.4 Solution of order one 

Solving Eqs. (3.7) and (3.8) using the boundary conditions (3.9) and (3.10), we get 
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Finally, the perturbation solutions up to first order for   and u  are given by 

0 1  = +          (3.15) 

and  0 1u u u= +          (3.16) 

 

4. Discussion of the Result 
In order to see the effects of various parameters like , , , ,M Gr    and Re  on the 

velocity we have plotted the Figs. 2-7. From Fig. 2, it is found that the velocity u   increases 

with an increase in slip parameter  . From Fig. 3, it is seen that the velocity u  increases with 

increasing  . From Fig. 4, it is observed that the velocity u  decreases with increasing 

Hartmann number M . From Fig. 5, it is noticed that the velocity u  increases with increasing 

 . From Fig. 6, it is found that the velocity u  increases with increasing Grashof number Gr . 

From Fig. 7, it is observed that the velocity u  decreases with increasing Reynolds number 

Re .       

In order to see the effects of various parameters like , , ,M Gr   and Re  on the 

temperature we have plotted the Figs. 8-12. . From Fig. 8, it is found that the temperature    

increases with an increase in  . From Fig. 9, it is seen that the temperature   decreases with 

increasing M . From Fig. 10, it is observed that the temperature   increases with increasing 

 . From Fig. 11, it is noticed that the temperature   decreases with increasing Gr . From 

Fig. 12, it is found that the temperature   increases with increasing Reynolds number  Re. 

From Table-1, it is observed that, the temperature   first decreases and then increases with 

increasing slip parameter  .  
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Table-1: The effect of slip parameter    on the temperature   for 0.1 = , 1Gr = , 5P = − , 

1M = , 
4


 =  and Re 1= .    

y  0 =  0.1 =  0.2 =  

0 1 1 1 

0.1 0.9108 0.9096 0.9091 

0.2 0.8165 0.8150 0.8147 

0.3 0.7190 0.7179 0.7181 

0.4 0.6196 0.6192 0.6200 

0.5 0.5191 0.5196 0.5210 

0.6 0.4180 0.4192 0.4211 

0.7 0.3161 0.3178 0.3199 

0.8 0.2132 0.2149 0.2168 

0.9 0.1082 0.1094 0.1107 
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5. Conclusions : 
In this paper, we investigated the flow and heat transfer aspects of conducting fluid in 

an inclined channel with constant a pressure gradient. The governing equations are solved 

analytically valid for small Pr Ec.   

❖ It is found that the velocity u  increases with increasing , ,Gr   and   , while it 

decreases with increasing M  and Re , and  

❖ the temperature    increases with increasing ,   and Re , while it decreases with 

increasing  , M and Gr .     
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