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Abstract 

Computer vision application deals with salient objects in image and video sequences and 

correlates them with objects in its neighborhood which is similar to the cognitive property of 

human visual system. The salient objects are detected using the directional selectivity 

property of the complex wavelets. Memory efficient Distributive architecture is considered 

for 3D DTCWT for the detection of salient objects in the video sequence. Proposed are the 

reduced modular DA architecture I and II and also optimized modular DA architecture I and 

II. Again, for the detection of salient objects in the video sequence using 3D DTCWT, High 

throughput Systolic Array architecture is considered. Reduced modular SA architecture and 

optimized modular SA architecture are proposed. The proposed architectures are 

implemented on SPARTAN 6 FPGA and tested in the XILINX. 
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1. Introduction 

Salient object detection is the process of detecting salient objects in a given scene and 

segmenting the object considering the accurate boundary of the object of interest. In salient 

object detection process based on deep learning algorithms, edge features of the object of 

interest is detected first or the CNN is trained to learn edge features by the first fundamental 

layers.  Wavelets are used with CNNs as pre-processing layer for classification of images, 

detection of textures and for improving face resolution [16]. Wavelet sub bands are combined 

or fused prior to classification [17] or wavelet sub bands are used to compute feature vectors 

for classification [18] or significant features are extracted from wavelet feature for 

classification [19]. Waking et al. [20] have demonstrated the advantages of processing 3D 

DWT over 2D DWT for video coding to achieve higher compression as the sub bands capture 

both spatial and temporal information in the decomposed sub bands helpful in removing 

redundancy. Encoding of video sequences has been carried out by computing motion 

estimation and compensation algorithms that are computationally intensive. 3D Dual Tree 

Complex Wavelet Transforms (DTCWT) [21] have been used as alternative to encode video 

sequences to capture sub bands that are oriented in different spatiotemporal directions 

isolating image features and providing information on inherent motions in all directions. 3D 

DTCWT generates four times as many sub bands compared with 3D DWT (2m:1 redundancy 

for every m-dimension decomposition) and hence the challenge in identifying redundant 

information is four times complex as compared to that of 3D DWT sub bands [22]. Selesnick 

and Li have reduced the computation complexity by considering only the real sub bands for 

video coding and have demonstrated perfect reconstruction of video sequences. 3D DWT sub 

bands are generated considering filter pairs that satisfy Hilbert property, from these DWT sub 

bands 3D DTCWT real sub bands are derived by linear operations. The directional features in 

different directions are captured in 28 different high frequency sub bands and the low 

frequency information is captured in 4 sub bands. Four separate groups of sub bands with 

each group comprising of 7 sub bands are organized similar to that of 3D DWT sub bands 

with the advantage that the organized 3D DTCWT sub bands capture more directional 

features in different orientations. Correlation between 3D DTCWT real valued sub bands has 

been used to identify to eliminate redundancy and encode the coefficients. Even with only 

real valued sub bands there is redundancy in information and very few critical coefficients are 

sufficient to represent the information content in the given input data. Reeves and Kingsbury 

have proposed noise shaping method [23] to increase sparsity between transform coefficients 

and insignificant coefficients are removed. It is also observed that the insignificant 

coefficients have less intensity levels but these insignificant coefficients form coherent 

regions in every sub band and when removed using noise shaping method constitutes loss of 

motion vectors. The noise shaping method de-correlates the wavelet coefficients and the 

number of non-zero coefficients is less than the coefficients of 3D DWT and reconstructing 

the video data from these coefficients have generated same level of video data as compared 

with reconstructed data with 3D DWT sub bands[24].  With motion information in 3D 

DTCWT sub bands Wang et al.[25] have encoded the noise shaped sub bands using bit plane 

coding exploiting inter redundancy in high frequency sub bands for video coding. The four 

low pass sub bands coefficients are encoded using 16-bit vector considering 2 x 2 sub blocks 
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in each of the four sub bands and 28 the 28 high pass sub bands are encoded using 28-bit 

vector with adaptive arithmetic coding. Julia Neumann and Gabriele Steidl [26] in their work 

have used DTCWT for feature extraction from complex sub bands computing 2-norm of each 

of the DTCWT sub bands generated from m-level decomposition. Support Vector Machine 

(SVM) is used for classification of these features. The 3D DTCWT sub bands are organized 

with the same number of sub bands as that of 3D DWT sub bands, by capturing the six 

directional orientations from both the real and imaginary sub bands by gradient operations 

and averaging methods. Deep learning algorithm that processes the directional features 

captured with SPIHTL algorithm from the reorganized 3D DTCWT sub bands. The 

computation complexity of 3D DTCWT is four times complex than 3D DWT, for real time 

detection of salient objects in surveillance applications; there is a need for fast processing 

algorithms for computing 3D DTCWT sub bands. In this paper, high speed architectures with 

low power schemes are proposed, implemented on FPGA platform for computing 3D 

DTCWT sub bands for feature detection in video salient object detection. Section II discusses 

DTCWT algorithm and 3D DTCWT structure, section III discusses proposed architecture for 

3D DTCWT, section IV presents FPGA implementation and results, section V presents 

conclusion.  

 

2.  DTCWT Architecture  

The DTCWT sub band computation is similar to DWT with DTCWT employing Hilbert 

Pair of DWT filters to produce complex wavelet sub bands comprising of real and imaginary 

parts. The shift invariance property of DTCWT has the advantage of overcoming aliasing loss 

as reported by Kingsbury [31] in DWT and it is reported by Simoncelli et al. [32] on the 

interoperability of sub band coefficients. The wavelet filters bandwidth for DTCWT are 

approximately one octave wide and hence the features such as edges or surfaces are localized 

in space within the 28 sub bands and are also found to be uniformly spaced at any scale. The 

optimal characteristics of DTCWT of directional selective property are hence suitable for 

feature selection and improve image registration process. Fig. 1 shows the 3D DTCWT level-

1 structure. The 3D DTCWT structure is shown in Figure 1(a). The first stage is the 2D 

DTCWT processor comprising of two stages and the third stage is the processor in temporal 

domain.3D input data comprising of 52 frames with each frame of size 512 x 512 is 

processed simultaneously by 52 numbers of 2D DTCWT processing unit. Every 2D frame 

(represented by S1(Z1Z2)) is processed row wise first and then column wise in the 2D 

processor generating four sub bands from each frame. The third stage DTCWT processor 

processes the sub bands in the z-direction to generate eight sub bands thus representing the 

first octave bands (shown in Figure 1(c)). Similarly, the 3D DTCWT structure generates eight 

octaves with each octave comprising of eight sub bands of one low pass band and seven high 

pass bands. The 2D DTCWT processor comprises of two stage processing unit, the row 

processing and column processing. The row processing stage consists of four filter banks 

represented by {Hoa, Hob, H1a & H1b}, each of these filter outputs are further processed by 

four column filters. 3D DTCWT sub-bands of low pass (𝐶1𝑎 𝑏⁄
1 ) and high pass (𝐷1𝑎 𝑏⁄

𝑚 ) are 

mathematically represented as in Equations (1) – (4), where A and B are real and imaginary 

filter coefficients respectively.  
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𝐶1𝑎 𝑏⁄
1 (𝑍1𝑍2𝑍3) =    (2𝑗 ↓) [(𝐴𝑎

𝑗 (𝑍1) ± 𝑖𝐴𝑏
𝑗 (𝑍1)) (𝐴𝑎

𝑗 (𝑍2) + 𝑖𝐴𝑏
𝑗 (𝑍2)) (𝐴𝑎

𝑗 (𝑍3) + 𝑖𝐴𝑏
𝑗 (𝑍3))  𝑆(𝑍1𝑍2𝑍3)]  (1) 

𝐷1𝑎 𝑏⁄
1 (𝑍1𝑍2𝑍3) =  (2𝑗 ↓) [(𝐴𝑎

𝑗 (𝑍1) ± 𝑖𝐴𝑏
𝑗 (𝑍1)) (𝐵𝑎

𝑗(𝑍2) + 𝑖𝐵𝑏
𝑗(𝑍2)) (𝐴𝑎

𝑗 (𝑍3) +  𝑖𝐴𝑏
𝑗 (𝑍3))  𝑆(𝑍1𝑍2𝑍3)]      (2) 

𝐷2𝑎 𝑏⁄
1 (𝑍1𝑍2𝑍3) =  (2𝑗 ↓) [(𝐵𝑎

𝑗(𝑍1) ± 𝑖𝐵𝑏
𝑗(𝑍1)) (𝐴𝑎

𝑗 (𝑍2) + 𝑖𝐴𝑏
𝑗 (𝑍2)) (𝐵𝑎

𝑗(𝑍3) +  𝑖𝐵𝑏
𝑗(𝑍3))  𝑆(𝑍1𝑍2𝑍3)]      (3) 

𝐷3𝑎 𝑏⁄
1 (𝑍1𝑍2𝑍3) =  (2𝑗 ↓) [(𝐵𝑎

𝑗(𝑍1) ± 𝑖𝐵𝑏
𝑗(𝑍1)) (𝐵𝑎

𝑗(𝑍2) + 𝑖𝐵𝑏
𝑗(𝑍2)) (𝐵𝑎

𝑗(𝑍3) +  𝑖𝐵𝑏
𝑗(𝑍3))  𝑆(𝑍1𝑍2𝑍3)]      (4) 

 

 

Figure. 1 DTCWT structure (a) 3D input image (b) 3D DTCWT (c) First octave of DTCWT 

 

  The 3D DTCWT module in Figure 1 is realized using dual tree filter structure shown in 

 Figure 2 that generates six complex high-pass bands and two complex low pass sub 

bands at every level. The parameter r represents the real part, i1 represent the row processed 

imaginary sub band and i2 represents the column processed imaginary sub band. The output 

of each sub band in the filter bank is computed from the 4-tuple (represented by the 

expression r + si1+ ti2 + u i1i2). The real term sub bands are obtained by setting i1= i2 = i for 

the Ca, D1a, D2a, D3a components and –i1 = i2 = i for the Cb and D1b, D2b, D3b 

components.   
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Figure. 2 2D DTCWT structure 

 

VLSI implementation of DTCWT algorithm requires large number of arithmetic operations 

and memory operations to be performed. Ferhat Canbay et al. have implemented DTCWT on 

Spartan 6 FPGA for biomedical signal processing applications [11]. The architecture 

implemented on FPGA is designed with one multiplier and one adder. The hardware results 

of DTCWT output are compared with MATLAB simulation results. The input data to the 

FPGA is from the computer interfaced through Ethernet. Ferhat Canbay et al. have also 

implemented DTCWT on FPGA using code generator tool considering one adder, one 

multiplier scheme, one adder one multiplier with N channel that have been demonstrated to 

operate at maximum frequency of 1840 kHz and 920/N kHz respectively [12]. The 

architectures designed by Ferhat et al. are very basic modules for biomedical signal 

processing. DTCWT algorithm is similar to that of DWT it is required to develop suitable 

architecture considering 3D DWT architectures.  

Jiang and Crookes [13] have designed area-efficient high-throughput 3D DWT 

architecture based on Distributed Arithmetic (DA) algorithm on Virtex-5 FPGA. Input data 

of size 128 x 128 x128 is regrouped into 68 x 68 x 68 of sub groups with four pixel overlap 

and each of these sub blocks are processed by 3D DWT based on DA algorithm designed 

using 9/7 wavelet filter [14 - 15]. The device utilization is 1271 slices operating at maximum 

frequency of 85 MHz. In 3D DWT algorithm the input data is processed along the rows in the 

first stage, along the columns in the second stage to compute 2D sub bands for each of the 
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frame and in the third stage the 2D sub bands are processed along the temporal direction to 

generate 3D DWT sub bands. Wavelet filters in each of the stage is either 9/7 or 5/3 filters 

that requires arithmetic units such as adders and multipliers for low pass or high pass filter 

implementation. Convolution based 3D DWT schemes are faster with high usage of 

arithmetic resources [1], lifting scheme based 3D DWT [2-3] reduces the number of 

arithmetic operations, DA based algorithms is multiplierless structure [4], transpose based 

schemes with parallel processing schemes provide faster computation [5 – 6] and in systolic 

array based methods throughput and latency is improved. The design challenges in 3D DWT 

are optimizing the number of arithmetic operations, processing speed, power requirement and 

memory utilization. Reconfiguration of 3D DWT algorithm and architecture for processing 

multilevel decomposition is one of the key requirements. One of the methods that is based on 

parallel architecture and memory optimization is proposed by Y. Hu et al. [ 7] for 2D DWT. 

Darji et al. [34] have designed 3D DWT structure with memory efficient schemes and high 

throughput. Srinivasa rao and Chakrabarti [8] have designed 3D DWT with parallel 

processing schemes and lifting schemes that utilize less memory resources based on 9/7 filter. 

ASIC implementation of 3D DWT architecture and Xilinx platform implementation for the 

design is carried out demonstrating the architecture operating at maximum frequency of 200 

MHz and 265 MHz respectively. Divakar et al. [9] have designed nine stage 2D parallel 

processing module with modified DA algorithm to compute 3D DWT and 3D IDWT 

processing based on 9/7 Daubechies filter. The 3D DWT engine is implemented on Xilinx 

FPGA Virtex-5 XC5VLX155T operating at maximum frequency of 381 MHz clock. Divakar 

et al. [9] have designed 2D-DTCWT based on hybrid architecture (combining DA algorithm 

and multiplexer logic) and is implemented on FPGA that occupies 112 slices and operates at 

maximum frequency of 496MHz consuming power less than 0.2W. Poornima[10] 3D 

DTCWT architectures reported in literature are designed considering DA algorithm, systolic 

array schemes and parallel processing techniques. Computing the 3D DTCWT sub bands 

minimizing number of arithmetic operations by exploiting redundancy in filter coefficients 

will be advantageous for multi-level decomposition of input data. A detailed discussion on 

improved methods for 3D DTCWT implementation on FPGA platform is presented.  

 

3.  3D DTCWT Architecture  

The first stage of 3D DTCWT algorithm comprises of four filters that process the input data 

along the rows, the second stage processes the data along the columns as shown in Figure 2 

requires 16 filters. The third stage requires 16 filters that process data in the temporal 

directions. The 3D DTCWT structure is modular in nature and requires 9 filter banks with 

each filter bank comprising of four filters. The four filter coefficients considered in this work 

are 10-tap filters (Kingsbury 10-tap filter) and are presented in Table 1. The filter outputs are 

mathematically represented as in Eq. (4) based on convolution expression. The filter transfer 

function is represented by {H0a, H0b, H1a, H1b}, the input is represented by S(n1,n2) and 

the filter outputs are represented as YLR, YHR, YLI, YHI. The number of multiplications 

and additions for generating one output sample per filter will be 10 and 9 respectively. The 

total number of arithmetic operations for processing N rows of data having N pixels will be 

40N2 and 36N2 multipliers and adders. In this work two different approaches for 
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implementing the filter bank is presented, first is based on DA logic and the second is based 

on systolic array logic.  

Table 1- Filter Coefficients 

Dtf1_df Dtf1_rf 

0 

-0.0884 

0.0884 

0.6959 

0.6959 

0.0884 

-0.0884 

0.0112 

0.0112 

0 

0 

-23 

23 

178 

178 

23 

-23 

3 

3 

0 

0 

-0.0112 

0.0112 

0.0884 

0.0884 

-0.6959 

0.6959 

-0.0884 

-0.0884 

0 

0 

-3 

3 

23 

23 

-178 

178 

-23 

-23 

0 

0 

0.0112 

0.0112 

-0.0884 

0.0884 

0.6959 

0.6959 

0.0884 

-0.0884 

0 

0 

3 

3 

-23 

23 

178 

178 

23 

-23 

0 

0 

-0.0884 

-0.0884 

0.6959 

-0.6959 

0.0884 

0.0884 

0.0112 

-0.0112 

0 

0 

-23 

-23 

178 

-178 

23 

23 

3 

-3 

0 

 

3.1 Memory efficient DA DTCWT architecture  

The proposed modular Distributed Array (DA) architecture for the filter coefficients consists 

of 10 input registers and each of it is of 10 bits in size all operating in parallel. The DTCWT 

coefficient enters the first input register and goes to the memory and to the second input 

register just above the first. When the second coefficient enters the first input register the first 

coefficient is available in the second input register. When the coefficient number 10 is arrives 

at the first input register, the coefficient 1 would be at input register 10. Thus after 10 

coefficients, the coefficient 11 will be operated in parallel with the previous 9 coefficients. 

In the reduced modular DA architecture 1, the parallelism is done for the first group of 5 

input coefficients and the second group of 5 input coefficients which is the architecture 

depicted in the figure 3.This increases the speed as compared to the previous architecture. 

 
Figure 3 Reduced Modular DA Architecture–1 
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In the next architecture, called the reduced modular DA architecture 2, the parallelism is 

carried out for the first group of lower order 5 input coefficients and a second group of higher 

order 5 input coefficients of the first 5 inputs, a third group of lower order 5 input coefficients 

of the second 5 input coefficients and fourth group of higher order 5 input coefficients of the 

second 5 input coefficients. This architecture is as depicted in the figure 4.This increases the 

speed as compared to the previous 2 architecture. 

Equation 5 shown below is used for the computation of the coefficients. 

 
Equation (5) 

 
Figure 4 Reduced Modular DA Architecture–2 
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The equation 6  is used for the coefficient calculations for the reduced modular  DA 

architecture 2 depicted in figure 4. 

 
Equation (6) 

 

Another memory efficient Modular DA architecture is proposed, which is as shown in the 

figure 5. This is called the optimized structure 1. In this architecture, the optimum filter 

coefficients are taken for the calculation of coefficients.  

 
Figure. 5 Optimized Modular DA architecture 1 

 

A variant of the above structure is the other memory efficient modular DA architecture 

depicted in the figure 6. This is the optimized structure 2. 
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Figure. 6 Optimized Modular DA architecture 2 

 

The optimised way of the coefficients calculation is done with the 2 equations 7 and 8 which 

yield a comparable results 

 
Equation – (7) 

 
Equation – (8) 

 

3.2 High throughput DTCWT architecture  

Systolic Array architecture has a higher throughput. Shown below, in figure 7 is the scheme 

of the SA architecture, consisting a number of Processing Elements (PE). The M inputs enters 

the processing element sequentially with the input sequence and ‘a’ coefficients this output 

enters the next processing element where the input id processed with the ‘b’ coefficients. 
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Figure.7 SA Architecture 

 

Figure 8 depicts the PE used as building block in the figure 7. It consists of a multiplier 

which multiplies the a coefficients with the X inputs. The Even sequence sign change vector 

changes the sign of the even coefficients.  

 
Figure. 8 PE for Even sequence 

 

Figure 9 depicts the PE used as building block in the figure 7. It consists of a multiplier 

which multiplies the a coefficients with the X inputs. The Odd sequence sign change vector 

changes the sign of the Odd coefficients.  
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Figure. 9 PE for Odd sequence 

 

Figure 10 depicts the reduced modular architecture using the PE described above. The even 

and odd bits are split and processed with LVT for producing the filter bank coefficients. 

 

 
 

Figure. 10 Reduced modular SA architecture 
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Figure 11 depicts the optimized modular SA architecture using the PE described above. The 

even and odd bits are split and processed with LVT for producing the filter bank coefficients. 

The optimum filter bank coefficients are used in the LVT 

 

 
Figure. 11  Optimized modular SA Architecture 

 

The Concept of the SA architecture is as depicted below. With the input X’s multiplied with 

the h0a gives the outputs Y0a’s and multiplying it with h1a gives Y1a. Similarly, X’s multiplied 

with h0b yields the Y0b and its multiplication with the h1b yields the Y1b. 

 

 

 

4.   FPGA Implementation & Results  

The FPGA implementation with results obtained of the proposed architectures are discussed 

in this section. The black box usage is discussed in Table 2. the RMSA architecture uses 

maximum BELS in all and does not use the MULT_AND sections. The RMDA architectures 

uses the most number of Flipflops/Latches and IO buffers. The DSP blocks are not used in 

other architectures but in RMSA Architectures. 
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Table: 2  Blackbox Usage 

 RMSA ORMSA OMDA-1 OMDA-2 RMDA1 RMDA-2 

BELS 2246 576 1208 1208 2160 2160 

MULT_AND – – 64 64 224 224 

Flipflops/Latches 1524 1524 860 860 1728 1728 

I/O Buffers 322 322 111 111 322 379 

DSPs 16 16 – – – – 

 

The comparison of SLUs is presented  in Table 3. the RMDA architecture uses maximum 

number of Slice registers and LUTs and also the number of Logic used is high in RMDA 

architecture but the highest is in RMSA. The Memory used is highest in RMDA architecture. 

The number used as SLR is most in the RMSA architecture. The percentage of usage is 

highest in RMSA and least in RMDA1 

 

Table : 3 Comparison of SLUs 

 RMSA ORMSA OMDA-1 OMDA-2 RMDA1 RMDA-2 

Number of Slice 

Registers: 860 

 

419 1524 1224 

 

1728 

 

1528 

Number of Slice LUTs: 

 

708 

 

403 1534 1231 

 

1620 

 

1502 

Number used as Logic: 584 327 1056 1056 

 

1156 

 

1156 

Number used as 

Memory: 368 368 584 584 

 

1056 

 

1056 

Number used as SRL: 368 368 124 124 144 144 

Number of LUT Flip 

Flop pairs used: 802 388 872 572 

 

1872 

 

1637 

Number with an unused 

Flip Flop: 113 

 

113 

 

12 

 

12 

 

48 

 

48 

Number with an unused 

LUT: 

 

113 

 

113 

 

164 

 

164 

 

576 

 

576 

Number of fully used 

LUT-FF pairs: 

 

1411 

 

1411 

 

696 

 

696 

 

1152 

 

1152 

Number of unique 

control sets: 

 

80 

 

80 

 

32 

 

32 

 

80 

 

80 

% of Usage 86.19 86.19 72.07 79.81 64.86 68.55 

Number of IOs: 325 325 114 114 382 325 

Number of bonded 

IOBs: 

 

323 

 

323 

 

112 

 

112 

 

380 

 

323 

Number of 

BUFG/BUFGCTRL/BU

FHCEs: 

 

 

1 

 

 

1 

 

 

1 

 

 

1 

 

 

1 

 

 

1 

Number of DSP48A1s: 

 

16 

 

4 

 

 – 

 

– 

 

– 

 

– 

 

YMER || ISSN : 0044-0477

VOLUME 21 : ISSUE 11 (Nov) - 2022

http://ymerdigital.com

Page No:336



 

 

The comparison of timing report is shown in Table 4. the RMDA architecture uses maximum 

number of Slice registers and LUTs and also the number of Logic used is high in RMDA 

architecture but the highest is in RMSA.  

 

Table: 4 Timing Report 

 RMSA ORMSA OMDA-1 OMDA-2 RMDA1 RMDA-2 

Minimum period: 3.508ns 3.561ns 1.988ns 1.988ns 4.017ns 4.101ns 

Maximum Frequency 

(MHz) 

 

285.083  

 

280.796  503.069  248.967  

 

248.967 

 

243.873  

Minimum input arrival 

time before clock: 3.893ns 3.215ns 1.561ns 1.212ns 

 

 

4.450ns 

 

 

3.960ns 

Maximum output 

required time after 

clock: 

 

 

3.634ns 

 

 

3.634ns 

 

 

1.591ns 

 

 

0.511ns 

 

 

3.597ns 

 

 

3.597ns 

Total number of paths 

/ destination ports: 13812/2994 3843/827 

 

 

17184/2368 

 

 

17184/2368 

 

 

17184/2368 

 

 

9540/1212 

Total REAL time to 

Xst completion: 154.00 secs 104.00 secs 48.00 secs 47.00 secs 

 

87.00 secs 

 

87.00 secs  

Total CPU time to Xst 

completion: 153.68 secs 103.76 secs  

 

47.87 secs 

 

46.91 secs 

 

86.76 secs 

 

86.76 ecs  

 

5.   Conclusion  

The tables 2 – 4 gives the comparison of the results obtained using the proposed architectures 

- RMSA, ORMSA, RMDA and OMDA for the evaluating the coefficients of DTCWT. The 

RMSA architectures proposed, uses DSP blocks and provides high throughput as compared 

to the RMDA and OMDA architecture.  The RMDA and the OMDA architectures are the 

memory efficient architectures as compared to the RMSA. 

The Memory used is highest in RMDA architecture. The number used as SRL is most in 

the RMSA architecture. The percentage of usage is highest in RMSA and least in RMDA1. 

The percentage of usage is maximum in the SA architecture and is least in the RMDA 

architecture. 
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