METHOD OF TREATMENT OF BURNS CAUSED BY ACID AND BOILED WARNINGS: A NATURAL OPPORTUNITY

¹* Mrs. Poonam Talwan, ² Dr. Sanjay Kumar, ³ Mr. Darsh Gautam,
⁴Mr. Anchal Sharma, ⁵ Mr. Avichal Kumar

Assistant Professor, Himachal Institute of Pharmaceutical Education & Research, Bela, Nadaun HP-177033 India.

Associate Dean cum Principal, School of Pharmacy, Career Point University Hamirpur HP-176041 India.

Assistant Professor, Himachal Institute of Pharmaceutical Education & Research, Bela, Nadaun HP-177033 India

Assistant Professor, Abhilashi College of Pharmacy, Mandi HP-175008 India. Research Scholar, KLE College of Pharmacy, II block, Rajajinagar, Bengaluru, Karnataka-560010 India.

*Corresponding Author

Mrs. Poonam Talwan, Assistant Professor, Himachal Institute of Pharmaceutical Education & Research, Bela, Nadaun HP-177033 India.

ABSTRACT

One of the most agonising injuries is a burn. Burn wounds are classified according on the depth and severity of the burn. One of the most common and difficult issues faced by burn patients is the spread of infection, which can impede the healing process. Traditional treatments for burn wounds utilising natural resources are one of the best options since they reduce the risk of infection greatly. To put it another way, natural resources are cost-effective and free of additional issues. There are many cutting-edge treatments for burn wounds available, but many can have serious side effects and toxicities, thus there is a need for natural solutions to limit the risk of subsequent issues. Traditional and herbal therapies for the treatment of burns caused by acid attacks and domestic abuse by boiling water have been highlighted in this review because of the growing public concern about the safety of women in our country. The herbal resource is the focus of this article. In an effort to better understand acid and boiling burn wounds' biology and management, here is a review and exploration of these wounds. For the better management of the above-mentioned situations, further scientific research on the natural resources indicated will be advantageous.

Keywords: acid burn, boiled burn, wound, infection, traditional remedy.

INTRODUCTION

In terms of both physical and mental trauma, burns are among the most well-known. The sensitive tissues in the body are damaged by burns. Burning-related alterations in the skin's sensitive tissues have a long-term effect on the healing process [1, 2]. Burn wounds are extremely difficult to treat. Many patients have died while undergoing therapy because of respiratory arrest and excruciating discomfort [3, 4]. Alternating inflammatory responses have been shown to hasten the healing of burn scars [5]. As a result, burn wounds are one of the most painful illnesses, which not only affects the patient's health but also imposes a financial burden [6]. Flavonoids, alkaloids, saponins, and phenolic chemicals have been found to be the most potent stimulators of wound contraction in a wide variety of species [7]. A large amount of the burn is covered by an acid burn wound and a boiling burn wound. Domestic violence or a case of retribution against women is sometimes referred to as an acid burn assault, however it is not exclusive to women. Assaults on male victims are often motivated by a disagreement over property, criminality, and violence [8]. As a result of the acid attack, a person's health and well-being are adversely affected. Society and the acceptance of their own existence becomes increasingly difficult for them [9]. Boiling water is the primary source of thermal burns. Protein and immunoglobulin are lost from the body in extreme circumstances [10]. Depending on the severity of the burn, the patient should be treated and handled with extreme caution. Scar-free healing and the management of infection should be the goals of the treatment.Boiling wounds are more likely to be caused by domestic abuse or accidents, according to a recent survey (Table 1).

On the other side, acid attacks on women and girls have been found to be motivated by a desire to harm their appearance (Table 2). Though in all cases of burn the intensity and pain is great alongwith infections, the burn due to acid attack and boiled burn wound are taken into mind for availing their suitable natural quick therapy to reduce secondary problems

Category	Cause
Children (Pediatric)	A kid's disability might be the cause of their abuse; hostility, an undesired child, or domestic violence can also lead to their abuse, and sometimes it's an accident. [12].
Adult (Women)	Domestic violence is more common among women who work in the kitchen. [13].
Adult (Men)	Unintentional, accidental and sometime suicidal [14].
Elderly above 50 years	As a result of marital violence and ready access to a flame or boiling water, [15].

Table: 1 Accidental boiled burn cause and category

Country	Reason of acid attack	Target of attack
India	Violence and molestation have led to societal stratification and a shift in gender roles, as well as dowry.	Face to destroy beauty
Bangladesh	Theft, kidnapping, and indecent assault are all forms of sexual harassment.	Face
Cambodia	Women's trafficking and domestic abuse are both on the rise.	Face
Sri lanka	Refusing to accept the proposal because of their religious beliefs and their attire.	Skin and face [16].

Table: 2 Acid attacks on women (target face)

Pathophysiology of burn

Proinflammatory cytokines are seen in higher concentrations in the blood after a burn wound has healed. In the aftermath of a burn wound Leukocytes are important participants in the production of tumour necrosis factor (TNF-) and interleukin-I (IL-I). Inflammation, fever, and a general catabolic condition are caused by both cytokines. Endothelial cells and macrophages control the production of prostaglandin, platelet-activating factor, and interleukin-6 (IL-6). T-cells are activated during the acute phase. Natural killer (NK) and T-helper type-I (Th-I) cell-produced gamma interferon is another proinflammatory cytokine following burn injury [17].

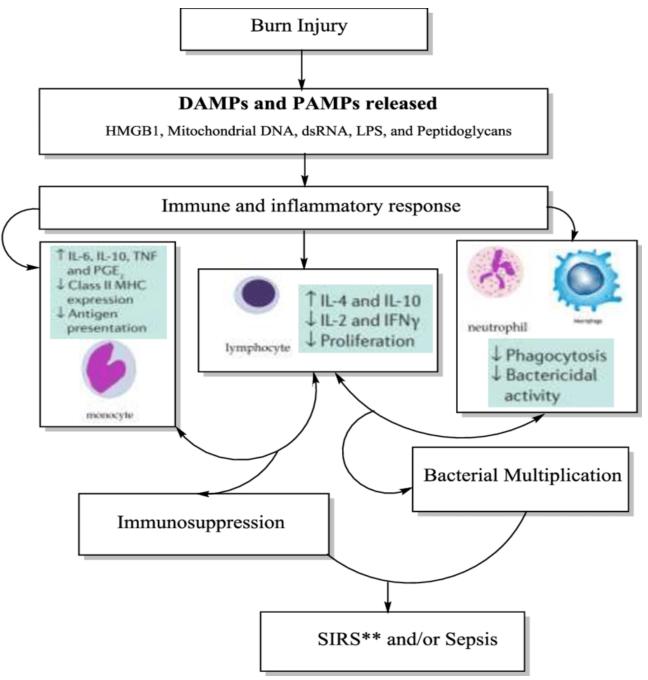
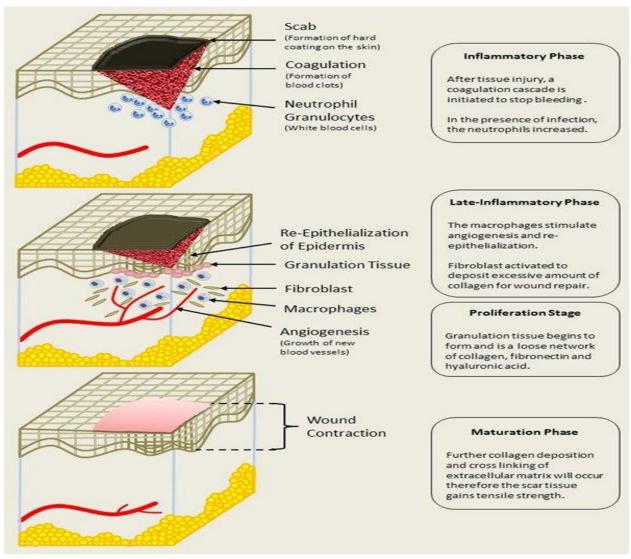



Fig: 1 pathophysiology of burn

An example of this is shown in Fig 1. Mitochondrial DNA and dsRNA, as well as pathogenassociated molecular patterns (PAMP) like lipopolysaccharides and peptidoglycan, are produced during a burn injury, which causes the production of endogenous damageassociated molecular patterns (DAMPs). Increased muscle protein breakdown, insulin resistance and an increase in heart stress are just a few of the metabolic alterations that are brought on by this capillary leakage, inflammatory reaction and metabolic abnormalities. In contrast, an inflammatory response including monocytes (increase IL-6, IL-10, TNF, PGE; decrease class II MHC expression; and decrease antigen expression) together with T-helper cells (increase IL-4, IFN gamma, and proliferation) results in immunosuppression. Bacterial proliferation is facilitated by macrophages and neutrophils (decrease phagocytosis, and decrease bactericidal). SIRS is an inflammatory state that affects the entire body, leading to multiple organ failure and eventually death [18] as a result of these occurrences.

Fig : 2 Stages of natural wound healing

Stages of Wound healing: Haemostatis:

In this stage, which occurs immediately following burn injury, keratinocytes and platelets are activated, aggregation is increased, and growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and transforming growth factor beta (TGF) are released by the keratinocytes, platelets and fibroblasts. As a temporary structure for the later stages of healing and an initiator of inflammation, this creates a fibrin clot that accumulates in the burned area [19].

Inflammation: The inflammation stage begins within 24 hours of the injury and lasts for a few days, depending on the severity of the burn. A variety of growth factors, including insulin like growth factor (IGF), transforming growth factor beta (TGF), and vascular

endothelial growth factor (VEGF), are produced by macrophages, neutrophils, and eosinophils, which aid in the elimination of pathogens [20].

Proliferation: Proliferation is the term used to describe the process of fibroblast and keratinocyte recruitment and activation at the wound site. Epithelialization and angiogenesis rely on keratinocytes, which are involved in both processes. VEGF, HGF, and FGF are all growth hormones that stimulate the growth of endothelial cells, which in turn triggers angiogenesis, the formation of new blood vessels (FGF). The remaining fibroblasts are transformed into myofibroblasts and employed in the formation of extracellular matrix [21].

Remodeling: Remodeling is the last step in the natural healing process of a burn wound. Growth factors aid in the regeneration of the granulation tissue in this stage of EMC remodeling. TIMPs and MMPs contribute to tensile strength by inhibiting metalloproteinases in the tissue. For burn wound healing, elements such as inflammatory cascade activation, injury severity and a patient's nutrition are all important. Inflammatory mediators and a rise in nitric oxide could be to blame for the capillary leakage [22].

Burn Wound Sepsis: It is a series of disastrous and deadly complications for the patient who has been burned [23]. Almost all burns become contaminated by bacteria, pollution, and dust, which prolongs healing time and complicates the burn's state to the point of death [24]. The germs penetrate deeper into the skin because of the burn's depth and the surrounding environment. This results in a more serious infection. Burn wound infection, urinary tract infection, and blood stream infection are the most common kinds of nosocomial infection in burn patients [25].

Classification of burn wound

Burns are classified into many categories based on the type of organism that caused the injury, the severity of the wound, and the response of the victim's tissue. The article's main focus is on the classification of burns based on the source (Table 3). There are five types of burns. These burns are classified into four categories based on severity and depth. [27]

Type of burn	Cause of burn	Description	Mechanism
Thermal burn	Scalds and burns can	Third- and second-	The skin's principal
	be caused by a variety	degree burns can	sensory fibre
	of methods.	result from thermal	subclasses are
		damage.	stimulated by the heat
			generated [28, 29].
Electrical burn	High and low	In and out points are	Skin is damaged as a
	voltages in contact	formed by the	result of the reactive
		passage of electricity	chemical reaction that
		through the body.	occurs when voltage
			is applied.[30]

Table 3: Classification of burns depending on causes

Flash burn	With the use of	Expose the body to an	Arc current forming
Thash bull			e e
	welding and any sort	electrified electrical	from a high voltage
	of ultraviolet (UV)	conductor or circuit	source[31]
	light.	component at a	
		distance of several	
		metres.	
Radiation burn	By X-ray, U.V ray or	Radiofrequencies	Cellular DNA is the
	radiation.	damage skin.	primary target of
			radiation.[32]
Chemical burn	By acid, alkali and	Chemical burns are	Response reaction
	other explosive	mainly full thickness	between skin segment
	chemical.	burn also cause	and causative agent
		coagulative necrosis.	[33, 34].

Table 4: Classification of burns depending on severity and dept	Table 4:	Classification	of burns	depending on	severity and dept
---	----------	----------------	----------	--------------	-------------------

Classification based on	Description	Diagrammatic
severity and depth		representation
Superficial I degree	The epidermis, the outermost layer of the skin, is the only part of the body that is affected. [35].	SUPERFICIAL-1 DEGREE
Superficial partial II a degree	Include both the epidermis and the dermis layers of the skin. Blisters form on the skin's surface when pressure is applied. [36].	SUPERFICIAL PARTIALIa DERMIS
Deep partial II b degree	It includes the reticular dermis, which is the lowermost layer of the dermis. All of the appendages have disappeared, and the skin appears dry and white. [37, 38].	EPIDERMIS DEEP PARTIAL II-b DERMIS SUBCUTANEOUS
Deep III degree	A whole skin thickness is included. Leathery, dry, white, or red skin with thrombosed veins is the result of this condition [39].	DEEP III -DEGREE

Challenges and advances in burn wound healing

- Skin grafting, skin substitutes, wound dressings, and negative pressure are some of the clinical practises in burn injuries.
- Infection, discomfort, and scarring are some of the difficulties faced by burn victims.
- Skin tissue engineering, new materials, and cutting-edge technology have made significant progress in burn wound healing in recent years. [40].

1. Clinical practices in burn injury

- a) **Skin grafting**: It is one of the most essential techniques used by dermatologists to undertake sensitive tissue reconstruction. Using this method, the free skin is transplanted where skin grating needs to be done on the body. The results of this approach are used to help treat burn burns by reconstructing the tissue. [41].
- b) **Skin substituents**: Restoring lost tissue integrity, avoiding scarring, and repairing damaged tissue are some of the key functions of a biopolymer called a skin substitute. [42].
- c) **Wound dressing**: There are several factors that contribute to wound healing, including the environment in which it takes place. It is now possible to treat diverse wounds, such as burn wounds, by focusing on different aspects of the healing process, thanks to advances in technology. [43].
- d) **Negative pressure wound therapy (NPWT)**: The use of NPWT in the treatment of burn wounds is also supported by scientific research. NPWT increases the rate at which tissue granulation occurs. NPWT also helps to improve contamination-related infections. [44].

2. Challenges faced by burn injury

- a) **Infection**: Bacteria penetrate deeper into the skin and produce serious infections as a result of the depth and severity of the burns [45]. When dealing with burn wound infections, it is important to treat them with extra care because they can take longer and require more work than other infections [46]. Microorganisms have been shown to colonise, which may have an impact on the patient's health in the future [47].
- b) Pain: Burns inflict excruciating pain. Patients may acquire stress-related issues as a result of their chronic pain. Burn injury pain has been documented as one of the most important clinical issues for burn victims. Currently present burn pain treatment is insufficient to provide complete pain relief [48].
- c) **Scarring**: After a burn injury has healed, researchers have found that scars remain on the burned area. Using traditional methods to repair scars is the most effective way to do it. Traditional treatments for burn scars can take some time to show results, but there are a number of options out there. To expedite scar healing, treatments should include massage therapy, moisturiser, and lotion. [49].

3) Advances seen during burn wound healing

a) **Skin tissue engineering:** In skin tissue culture, the goal is to induce new skin growth by cell culture and polymer chemistry. In burn wound healing, this treatment is frequently employed, whether the burn is acidic or thermal (boiling water). [50].

b) **Innovative material and advanced technologies:** Many new and advanced technologies are now accessible to replace traditional procedures including allograft, keratinocyte culture, xenograft, and keratinocyte culture [51, 52].

Natural remedy for burn due to acid and boiled wounds

Some of our ancestors' knowledge about the therapeutic properties of plants and animals was passed down through the generations through oral tradition [53]. Several studies have shown beneficial outcomes when traditional remedies are used to treat burns [54]. Additionally, traditional treatment helps to alleviate the financial load on patients. There is more spontaneity in using natural remedies than there is in using cutting-edge medical technology. [55].

Carica papaya (latex): The latex from the Carica papaya is excellent for the treatment of burns. By desloughing the tissue, the antibacterial properties of chymopapain and papains in latex aid to prevent infection [56]. Non-healing burn wounds are mostly caused by the sloughy skin tissue that develops after the regular skin tissue dies from the burn. Burn wound therapy includes preventing the spread of infection and removing eschar. In addition to softening the damaged skin, chymopapain and papain also have the ability to break down and digest dead skin cells. Papaya latex has been demonstrated to be useful in offering less painful, scar-free, and cleaner burn treatment [57] from several studies.

Honey (*Apis*): As a moisturising agent and antibacterial, honey is an excellent choice for the treatment of minor burns. Honey's levulose and fructose aid in tissue regeneration [58]. Using wound swabs, researchers found that honey treatment significantly reduced infection rates and early tissue granulation. Doctors are now using honey as an alternative treatment for burn injuries. Honey has been found to be beneficial in the treatment of superficial and partial-thickness burns. [59].

Arnebia euchroma (roots): There are no Arnebia plants in Iran. They have antibacterial and anti-inflammatory properties, which make them useful in treating burns. Arnebia euchroma roots and goat lipid are used to treat burns. There are more fibroblasts with inflamed cells and more well-organized collagen bands. Arnebia euchroma is made up of arnebin-1 and shikonin, the two primary components. Reduces the width of the wounds, gap length, facilitates the growth and creation of thick granulation tissue and the regeneration of the wound epithelium. Oxidation converts the shikonin derivative into the shikonin semiquinone radical, which has a vital role in burn wound healing,[60].

Malva sylvestris (flowers): This type of plant is native to Iran. Anti-inflammatory, antimicrobial, and anti-tumor properties of the plant are used to treat burns. Many people believe that applying cold cream to malva sylvestris flowers can help heal burns. Malvone A: 2methyl-3methoxy-5, 6-dihydroxy-1, 4 naphthoquinone is one of the phytochemical components of malva sylvestris that may be responsible for the antibacterial action of malva sylvestris. This shows that burn wound healing has been used in this way for centuries. [61]. **Combretum:** A huge and widespread genus is Combretum. Antifungal, antibacterial, antiinflammatory, cytotoxicity against tumour cell lines, antimalarial [62], antioxidant, and antivenom [62] are some of the traditional biological medicinal actions of the 200 to 250 species in this group. Senegalese native Combretum glutinosum is the source of this plant's name. Traditional Senegalese medicine relies on the bark of glutinosum's trunks to treat burn wounds. Tanning and a component of triterpenoid are found in the bark's aqueous extract, making it both soothing and anti-inflammatory on the skin. Mali-based plant Combretum mircanthum. In the treatment of burns, the root extract is employed. According to research, there are four additional species of Combretum that have antibacterial activity without causing any adverse effects and are therefore effective in the healing of burn wounds. There are a total of four species: Combretum nelson, Combretum albopuntactum, Combretum imberbe, and Terminalia sericea [65].

Capsicum annuum L. (leaves): This plant originates from Ethiopia. The burn wound was treated by the extraction of the leaves. In addition to being nutritious, Capsicum annum has therapeutic value. To heal burn wounds, it is one of the traditional herbs that has been widely explored for its anti-inflammatory and antioxidant qualities. [66].Capsaicinoids and their constituents, which include capsaicin, cis-capsaicin, dihydrocapsaicin, and capsiate, have antibacterial and anti-inflammatory properties, decreasing pain and inhibiting inflammation. [67].

Allium sativa (stem): Known as garlic in Asia, the plant is endemic to Iran's northeast and central regions. After the decoction procedure, the stem is used to clean the burn area and to treat it with sesame oil [69]. As a result of acid or boiling water burns in particular. Based on research, it has been found that crushed garlic cloves used orally to control burn wound infection in patients of various burn sizes can be effective in preventing pseudomonas aeruginosa infection. Research on garlic's antibacterial and antifungal properties began in the 19th century [70]. Garlic extract has been proven to be as efficient as 1 percent silver sulfadiazine in lowering the amount of bacteria in burn wounds after a 10% (v/v) garlic extract was applied to the wounds of mice. The lipid composition of cell membranes was altered as a result of garlic extract's antibacterial properties. [71].

Guiera senegalensis (leaves): Tropical Africa is the plant's natural habitat. After crushing the leaves, the paste is put to the burn. Antimicrobial action (naphthalene ketone derivative) of the leaves against gramme positive and gramme negative bacteria helps prevent and cure burn infections. It also has antifungal properties because of the presence of guieranone in the formula. [72, 73].

Lawsonia inermis (leaves): Henna (Lawsonia inermis) plant is native to Australia, Asia, and Northern Africa. [74] The dried leaves are ground into a paste, which is then smeared on a burn as an antibacterial agent. Aspergillus niger, Candida alblicans, and aeruginosa are some of the bacteria that can cause infection at a burn site [75]. The use of henna can help prevent and reduce this. Antimicrobial properties of the plant are attributed to the presence of 2-hydroxynapthoquinone (lawsone), a prominent component of the plant's phytochemical

ingredients (tannic acid, mannite, gallic acid). A study has found that henna-loaded gelatin oxidised starch mat dressing can be utilised to treat burns. Burn wound dressings with henna-loaded gelatin revealed low inflammation, reduced macrophages, antibacterial and antifungal properties at the burn site [76].

Aloe vera (leaves): Southeastern Europe is the natural habitat of this plant. Aloe vera has been used for burns in the past, but there are no clinical studies to back it up [77]. To speed up the healing process, aloe vera can be used as an epithelial stimulant. Antiseptic, antiinflammatory, antifungal, and antibacterial properties can be found in the aloe vera leaves, which also include lupenol and salicylic acid [78]. Since aloe plant contains a glycoprotein, a review was undertaken to see if it might be used for burn therapy, based on the findings of this review [79]. This shows that aloe leaf is able to speed up the healing process as well as the rate of epithelization [80].

Solanum tuberosum (peel): The potato plant is indigenous to the United States [81]. Potato peels used as dressing on burns have been shown in numerous trials to cause burns [82]. Painless application, non-adhesion to the wound, anti-bacterial and non-allergenic, inexpensive, and readily available are the ideal characteristics of an ideal dressing [83]. One solution that has all the qualities of an ideal wound treatment is a boiled potato dressing. The epithelium can regenerate and ease pain when cooked potato peel is used as a dressing. As well as providing a moist environment, it aids in the dehydration of the burn wound and the speedy recovery of the burn [84].

Laponite: Synthetic clay is what it is. Because of its antibacterial qualities, laponite can be used to treat burns. Laponite has been produced and manufactured as hydrogel, sponges, and films for the treatment of burns. According to a review, in-vitro tests on burn wound dressings have shown laponite and mafedine to be effective. Laponite's interlayer gaps can accept the mafedine molecule because of its strong capacity for interlayer ion exchange. This aids in the faster healing of burn wounds and the prevention of the spread of infection. [85].

Cow urine: In Nepal, cow urine is extensively utilised as a therapeutic agent to treat burn wound inflammation, according to a literature review. 2,2diphenyl-1-picrylhydrazyl free radical was used to measure antioxidant activity and agar disc diffusion was used to measure antibacterial activity in cow pee (DDPH). It has been found that as altitude increases, the antioxidant activity of cow pee increases significantly [86].

Cow dung: One of the most commonly utilised home treatments for burn wounds in many rural communities is cow dung. A variety of harmful microbes, including E.coli, staphylococcus aureus, and bacillus substilis. In the wound healing process, proteolytic enzymes such as collagenases, elastases, and matrix-metalloproteinases (MMPs) are used to break down scar tissue. To eliminate non-viable tissue from wounds, commercial debriding ointments commonly contain these enzymes. The presence of such proteases may be a role in the efficacy or presumed efficacy of cow dung for burns treatment. [87].

Gentian violet pain: Total body surface area burns ranged from 15% to 50% in 400 patients admitted to the burn ward, according to the results of a survey. All patients in this group received conventional medical treatment. Local gentian violet paint users make up Group II. Local treatment of gentian violet paint cured the burn lesion after six to eight weeks without necessitating skin transplantation or severe infection. Burn wound treatment can be made more cost-effective by using this paint. [88].

Electrolyzed oxidized water irrigation: According to a study, electrolyzed oxidised water (EOW) was used to treat a rat burn wound model infected with Pseudomonas aeruginosa because of the bactericide activity of EOW. Physiologic saline irrigation, EOW irrigation, or no irrigation at all was used on rats in groups –I, II, and III. Survival rates, endotoxin levels, and blood cultures were measured. Group-III (EOW irrigation) had a much higher survival rate than the other two groups. Electrolyzed oxidised water irrigation, according to this study, aids in the prevention of burn wound sepsis. [89].

Conclusion

Acid and boiled wounds pose a social hazard, hence the pathophysiology and natural healing of burns caused by acid and boiling water were examined in detail in this review. It's also linked to the way bioactive molecules from certain natural resources regulate burn. The current study stresses the use of traditional remedies in the treatment of burn injuries of any kind. Moreover, it was found that many traditional remedies cure acid and boiled burns almost by the same mechanism that is by inhibiting the bacterial or many other type of infection and increasing re-growth of tissue, or enhancing the rate of epithelialization. The study, on the other hand, has a positive outlook on the use of herbal treatments for the eradication of burn scars that persist even after therapy. There are a wide range of novel and cutting-edge treatments for burns accessible today. Traditional cures, on the other hand, are more cost-effective since they don't require the development of new technologies, and they don't have as many unintended side effects. By incorporating cutting-edge technology as a research emphasis in creating better medication for the management of acid and burn wounds, this review article will benefit several scientific studies on burn injuries. As a result of its easy availability, burn management in first aid therapy will benefit socioeconomically.

References

- Gibran NS, Wiechman S, Meyer W, Edelman L, Fauerbach J, Gibbons L, et al. American Burn Association consensus statements. *J Burn Care Res.* 2013;34:361–5. doi: 10.1097/BCR.0b013e31828cb249.
- 2. Mann R, Heimbach D. Prognosis and treatment of burns. West J Med. 1996;165:215–20.
- 3. American Burn Association. Burn incidence and treatment in the United States: 2013 fact sheet. 2013. <u>http://www.ameriburn.org/resources_factsheet.php</u>. Accessed 12 May 2015.
- 4. Sen S, Palmieri T, Greenhalgh D. Review of burn research for the year 2013. *J Burn Care Res.* 2014;**35**:362–8. doi: 10.1097/BCR.00000000000163.
- 5. Wolf SE, Arnoldo BD. The year in burns 2011. *Burns*. 2012;**38**:1096–108. doi: 10.1016/j.burns.2012.10.002.

- 6. Burd A. Research in burns present and future. *Indian J Plast Surg.* 2010;43:S11–4. doi: 10.4103/0970-0358.70717.
- 7. Thomas SJ, Kramer GC, Herndon DN. Burns: military options and tactical solutions. *J Trauma*. 2003;**54**:S207–18.
- 8. American Burn Association. National Burn Repository 2014. 2014. <u>http://www.ameriburn.org/2014NBRAnnualReport.pdf</u>. Accessed 12 May 2015.
- Kagan RJ, Peck MD, Ahrenholz DH, Hickerson WL, Holmes J, Korentager R, et al. Surgical management of the burn wound and use of skin substitutes: an expert panel white paper. J Burn Care Res. 2013;34:e60–79. doi: 10.1097/BCR.0b013e31827039a6.
- Nisanci M, Eski M, Sahin I, Ilgan S, Isik S. Saving the zone of stasis in burns with activated protein C: an experimental study in rats. *Burns*. 2010;36:397–402. doi: 10.1016/j.burns.2009.06.208.
- 11. Robins EV. Burn shock. Crit Care Nurs Clin North Am. 1990;2:299-307.
- Pham TN, Cancio LC, Gibran NS, American Burn Association American Burn Association practice guidelines burn shock resuscitation. *J Burn Care Res.* 2008;29:257–66. doi: 10.1097/BCR.0b013e31818ba14d.
- 13. Shirani KZ, Vaughan GM, Mason AD, Jr, Pruitt BA., Jr Update on current therapeutic approaches in burns. *Shock*. 1996;5:4–16. doi: 10.1097/00024382-199601000-00004.
- Dries DJ. Management of burn injuries recent developments in resuscitation, infection control and outcomes research. Scand J Trauma Resusc Emerg Med. 2009;17:14. doi: 10.1186/1757-7241-17-14.
- 15. Porter C, Hurren NM, Herndon DN, Borsheim E. Whole body and skeletal muscle protein turnover in recovery from burns. *Int J Burns Trauma*. 2013;**3**:9–17.
- 16. Farina JA, Jr, Rosique MJ, Rosique RG. Curbing inflammation in burn patients. Int J Inflamm. 2013;2013:715645. doi: 10.1155/2013/715645.
- 17. Edgar DW, Fish JS, Gomez M, Wood FM. Local and systemic treatments for acute edema after burn injury: a systematic review of the literature. *J Burn Care Res.* 2011;**32**:334–47. doi: 10.1097/BCR.0b013e31820ab019.
- Sommer K, Sander AL, Albig M, Weber R, Henrich D, Frank J, et al. Delayed wound repair in sepsis is associated with reduced local pro-inflammatory cytokine expression. *PLoS One*. 2013;8 doi: 10.1371/journal.pone.0073992.
- 19. Wilmore DW, Long JM, Mason AD, Jr, Skreen RW, Pruitt BA., Jr Catecholamines: mediator of the hypermetabolic response to thermal injury. *Ann Surg.* 1974;180:653–69. doi: 10.1097/00000658-197410000-00031.
- 20. Sakallioglu AE, Basaran O, Karakayali H, Ozdemir BH, Yucel M, Arat Z, et al. Interactions of systemic immune response and local wound healing in different burn depths: an experimental study on rats. *J Burn Care Res.* 2006;27:357–66. doi: 10.1097/01.BCR.0000216330.93056.06.
- 21. Pereira CT, Herndon DN. The pharmacologic modulation of the hypermetabolic response to burns. *Adv Surg.* 2005;**39**:245–61. doi: 10.1016/j.yasu.2005.05.005.
- 22. Hussain A, Dunn KW. Predicting length of stay in thermal burns: a systematic review of prognostic factors. *Burns*. 2013;39:1331–40. doi: 10.1016/j.burns.2013.04.026.

- Colohan SM. Predicting prognosis in thermal burns with associated inhalational injury: a systematic review of prognostic factors in adult burn victims. *J Burn Care Res.* 2010;**31**:529–39. doi: 10.1097/BCR.0b013e3181e4d680.
- 24. Jackson DM. The diagnosis of the depth of burning. *Br J Surg.* 1953;40:588–96. doi: 10.1002/bjs.18004016413.
- 25. Hettiaratchy S, Dziewulski P. ABC of burns: pathophysiology and types of burns. *BMJ*. 2004;**328**:1427–9. doi: 10.1136/bmj.328.7453.1427.
- 26. Kowalske KJ. Burn wound care. *Phys Med Rehab Clin North Am.* 2011;22:213–27. doi: 10.1016/j.pmr.2011.03.004.
- 27. Tan JQ, Zhang HH, Lei ZJ, Ren P, Deng C, Li XY, et al. The roles of autophagy and apoptosis in burn wound progression in rats. *Burns*. 2013;39:1551–6. doi: 10.1016/j.burns.2013.04.018.
- 28. Singer AJ, McClain SA, Taira BR, Guerriero JL, Zong W. Apoptosis and necrosis in the ischemic zone adjacent to third degree burns. *Acad Emerg Med.* 2008;15:549–54. doi: 10.1111/j.1553-2712.2008.00115.x.
- 29. Matylevitch NP, Schuschereba ST, Mata JR, Gilligan GR, Lawlor DF, Goodwin CW, et al. Apoptosis and accidental cell death in cultured human keratinocytes after thermal injury. *Am J Pathol.* 1998;153:567–77. doi: 10.1016/S0002-9440(10)65599-X.
- Deniz M, Borman H, Seyhan T, Haberal M. An effective antioxidant drug on prevention of the necrosis of zone of stasis: N-acetylcysteine. *Burns*. 2013;39:320–5. doi: 10.1016/j.burns.2012.06.015.
- 31. Tiwari VK. Burn wound: how it differs from other wounds? *Indian J Plast Surg.* 2012;45:364–73. doi: 10.4103/0970-0358.101319.
- 32. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. *Nature*. 2008;453:314–21. doi: 10.1038/nature07039.
- 33. Reinke JM, Sorg H. Wound repair and regeneration. *Eur Surg Res.* 2012;49:35–43. doi: 10.1159/000339613.
- 34. Werner S, Krieg T, Smola H. Keratinocyte–fibroblast interactions in wound healing. *J Invest Dermatol.* 2007;**127**:998–1008. doi: 10.1038/sj.jid.5700786.
- 35. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, et al. Epithelialization in wound healing: a comprehensive review. *Adv Wound Care*. 2014;3:445–64. doi: 10.1089/wound.2013.0473.
- 36. Widgerow AD. Cellular/extracellular matrix cross-talk in scar evolution and control. *Wound Repair Regen.* 2011;19:117–33. doi: 10.1111/j.1524-475X.2010.00662.x.
- 37. Singer AJ, Clark RA. Cutaneous wound healing. *N Engl J Med.* 1999;**341**:738–46. doi: 10.1056/NEJM199909023411006.
- 38. Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol. 2007;127:526–37. doi: 10.1038/sj.jid.5700613.
- 39. Snowden JM. Wound closure: an analysis of the relative contributions of contraction and epithelialization. *J Surg Res.* 1984;37:453–63. doi: 10.1016/0022-4804(84)90213-0.
- 40. Shih B, Garside E, McGrouther DA, Bayat A. Molecular dissection of abnormal wound healing processes resulting in keloid disease. *Wound Repair Regen*. 2010;18:139–53. doi: 10.1111/j.1524-475X.2009.00553.x.

- Claudinot S, Nicolas M, Oshima H, Rochat A, Barrandon Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. *Proc Natl Acad Sci U S A*. 2005;102:14677– 82. doi: 10.1073/pnas.0507250102.
- 42. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. *Nat Med.* 2005;**11**:1351–4. doi: 10.1038/nm1328.
- 43. Curran TA, Ghahary A. Evidence of a role for fibrocyte and keratinocyte-like cells in the formation of hypertrophic scars. *J Burn Care Res.* 2013;34:227–31. doi: 10.1097/BCR.0b013e318254d1f9.
- 44. Tabas I, Glass CK. Anti-inflammatory therapy in chronic disease: challenges and opportunities. *Science*. 2013;**339**:166–72. doi: 10.1126/science.1230720.
- 45. Arturson G. Forty years in burns research the postburn inflammatory response. *Burns*. 2000;26:599–604. doi: 10.1016/S0305-4179(00)00069-3.
- 46. Szpaderska AM, DiPietro LA. Inflammation in surgical wound healing: friend or foe? *Surgery*. 2005;**137**:571–3. doi: 10.1016/j.surg.2005.01.006.
- 47. Franz MG, Steed DL, Robson MC. Optimizing healing of the acute wound by minimizing complications. *Curr Probl Surg.* 2007;44:691–763. doi: 10.1067/j.cpsurg.2007.07.001.
- 48. Stubhaug A, Romundstad L, Kaasa T, Breivik H. Methylprednisolone and ketorolac rapidly reduce hyperalgesia around a skin burn injury and increase pressure pain thresholds. *Acta Anaesthesiol Scand.* 2007;**51**:1138–46.
- 49. Huang G, Liang B, Liu G, Liu K, Ding Z. Low dose of glucocorticoid decreases the incidence of complications in severely burned patients by attenuating systemic inflammation. *J Crit Care*. 2015;30:e7–11. doi: 10.1016/j.jcrc.2015.04.030.
- 50. Janzekovic Z. A new concept in the early excision and immediate grafting of burns. J Trauma. 1970;10:1103–8. doi: 10.1097/00005373-197012000-00001.
- **51.** Frick KD, Foster A. The magnitude and cost of global blindness: an increasing problem that can be alleviated. Am J Ophthalmol. 2003;135:471–6.10.1016/S0002-9394(02)02110-4
- **52.** Schultz GS, Strelow S, Stern GA, et al. Treatment of alkali-injured rabbit corneas with a synthetic inhibitor of matrix metalloproteinases. Invest Ophthalmol Vis Sci. 1992;33:3325–31.
- 53. Merle H, Gerard M, Schrage N. Severe ocular burns. Eur Ophthalmic Rev. 2011;5(2):130–3.
- **54.** Dua H, King AJ, Joseph A. A new classification of ocular surface burns. Br J Ophthalmol. 2001;85(11):1379–83.10.1136/bjo.85.11.1379
- **55.** Khodabukus R, Tallouzi M. Chemical eye injuries 1: presentation, clinical features, treatment and prognosis. Nursing Times. 2009;105(22):28–9.
- **56.** Hughes WF. Alkali burns of the eye. Arch Ophthalmol. 1946;35:423–36.10.1001/archopht.1946.00890200430010
- **57.** Roper-Hall MJ. Thermal and chemical burns of the eye. Trans Ophthalmol Soc UK. 1965;85:631–46.
- **58.** Rihawi S, Frentz M, Becker J, et al. The consequences of delayed intervention when treating chemical eye burns. Graefes Arch Clin Exp Ophthalmol. 2007;245:1507–13.10.1007/s00417-007-0597-2

- **59.** Schrage NF, Langefeld S, Zschocke J, et al. Eye burns: an emergency and continuing problem. Burns. 2000;26:689–99.10.1016/S0305-4179(00)00044-9
- **60.** Rihawi S, Frentz M, Schrage NF. Emergency treatment of eye burns: which rinsing solution should we choose? Graefes Arch Clin Exp Ophthalmol. 2006;244:845–54.10.1007/s00417-005-0034-3
- **61.** Schrage NF, Kompa S, Haller W, et al. Use of an amphoteric lavage solution for emergency treatment of eye burns. Burns. 2002;28:782–6.10.1016/S0305-4179(02)00194-8
- 62. Herr RD, White GL Jr, Bernhisel K, et al. Clinical comparison of ocular irrigation fluids following chemical injury. Am J Emerg Med. 1991;9:228–31.10.1016/0735-6757(91)90082-U
- **63.** Merle H, Donnio A, Ayeboua L, et al. Alkali ocular burns in Martinique (French West Indies). Burns. 2005;31:205–11.10.1016/j.burns.2004.09.001
- **64.** Brent BD, Karcioglu ZA. Effect of topical corticosteroids on goblet-cell density in an alkaliburn model. Ann Ophthalmol. 1991;23:221–3.
- **65.** Chung JH, Kang YG, Kim HJ. Effect of 0.1% dexamethasone on epithelial healing in experimental corneal alkali wounds: morphological changes during the repair process. Graefes Arch Clin Exp Ophthalmol. 1998;236:537–45.10.1007/s004170050118
- 66. Seedor JA, Perry HD, McNamara TF, et al. Systemic tetracycline treatment of alkali-induced corneal ulceration in rabbits. Arch Ophthalmol. 1987;105:268–71.10.1001/archopht.1987.01060020122043
- **67.** Pfister RR, Paterson CA. Ascorbic acid in the treatment of alkali burns of the eye. Ophthalmology. 1980;87:1050–7.10.1016/S0161-6420(80)35126-9
- **68.** Bouchard CS, Morno K, Perkins J, et al. Ocular complications of thermal injury: a 3-year retrospective. J Trauma. 2001;50:79–82.10.1097/00005373-200101000-00014
- **69.** Oliva MS, Taylor H. Ultraviolet radiation and the eye. Int Ophthalmol Clin. 2005;45(1):1–17. [PubMed], [Google Scholar]
- **70.** Voke J. Radiation effects on the eye. Part 1 Infrared radiation effects on ocular tissue. Optom Today. 1991 May;21:22–8.
- 71. Lewandowski R, Pegg S, Fortier K, Skimmings A. Burn injuries in the elderly. *Burns*. 1993;19:513–5. doi: 10.1016/0305-4179(93)90010-6.
- 72. 182. Hunt JL, Purdue GF. The elderly burn patient. *Am J Surg.* 1992;164:472–6. doi: 10.1016/S0002-9610(05)81183-3.
- 73. 183. Williams GJ, Herndon DN. Modulating the hypermetabolic response to burn injuries. *J Wound Care*. 2002;**11**:87–9. doi: 10.12968/jowc.2002.11.3.26382.
- 74. 184. Roberts G, Lloyd M, Parker M, Martin R, Philp B, Shelley O, et al. The Baux score is dead. Long live the Baux score: a 27-year retrospective cohort study of mortality at a regional burns service. *J Trauma Acute Care Surg.* 2012;**72**:251–6.
- 75. 185. Nordlund MJ, Pham TN, Gibran NS. Micronutrients after burn injury: a review. *J Burn Care Res.* 2014;**35**:121–33. doi: 10.1097/BCR.0b013e318290110b.
- 76. 186. Pintaudi AM, Tesoriere L, D'Arpa N, D'Amelio L, D'Arpa D, Bongiorno A, et al. Oxidative stress after moderate to extensive burning in humans. *Free Radic Res.* 2000;33:139–46. doi: 10.1080/10715760000300691.
- 77. 187. Vinha PP, Martinez EZ, Vannucchi H, Marchini JS, Farina JA, Jr, Jordao AA, Jr, et al. Effect of acute thermal injury in status of serum vitamins, inflammatory markers, and

oxidative stress markers: preliminary data. *J Burn Care Res.* 2013;**34**:e87–91. doi: 10.1097/BCR.0b013e31826fc506.

- 78. 188. Aida T, Murata J, Asano G, Kanda Y, Yoshino Y. Effects of polyprenoic acid on thermal injury. *Br J Exp Pathol.* 1987;68:351–8.
- 79. 189. Nickle SB, Peterson N, Peterson M. Updated physician's guide to the off-label uses of oral isotretinoin. *J Clin Aesthet Dermatol*. 2014;7:22–34.
- 190. Dematte MF, Gemperli R, Salles AG, Dolhnikoff M, Lancas T, Saldiva PH, et al. Mechanical evaluation of the resistance and elastance of post-burn scars after topical treatment with tretinoin. *Clinics*. 2011;66:1949–54. doi: 10.1590/S1807-59322011001100016.
- 191. Salles AG, Gemperli R, Toledo PN, Ferreira MC. Combined tretinoin and glycolic acid treatment improves mouth opening for postburn patients. *Aesthet Plast Surg.* 2006;30:356– 62. doi: 10.1007/s00266-004-0151-0.
- 82. 192. Macias-Barragan J, Sandoval-Rodriguez A, Navarro-Partida J, Armendariz-Borunda J. The multifaceted role of pirfenidone and its novel targets. *Fibrogenesis Tissue Repair*. 2010;**3**:16.
- 83. 193. Jung KI, Choi JS, Kim HK, Shin SY. Effects of an anti-transforming growth factor-beta agent (pirfenidone) on strabismus surgery in rabbits. *Curr Eye Res.* 2012;37:770–6. doi: 10.3109/02713683.2012.681748.
- Cianci P, Williams C, Lueders H, Lee H, Shapiro R, Sexton J, et al. Adjunctive hyperbaric oxygen in the treatment of thermal burns. An economic analysis. *J Burn Care Rehab.* 1990;11:140–3. doi: 10.1097/00004630-199003000-00009.
- 85. 198. Selcuk CT, Ozalp B, Durgun M, Tekin A, Akkoc MF, Alabalik U, et al. The effect of hyperbaric oxygen treatment on the healing of burn wounds in nicotinized and nonnicotinized rats. *J Burn Care Res.* 2013;34:e237–43. doi: 10.1097/BCR.0b013e318270092e.
- 86. 199. Cianci P, Slade JB, Jr, Sato RM, Faulkner J. Adjunctive hyperbaric oxygen therapy in the treatment of thermal burns. *Undersea Hyperb Med.* 2013;40:89–108.
- 87. 200. Eskes A, Vermeulen H, Lucas C, Ubbink DT. Hyperbaric oxygen therapy for treating acute surgical and traumatic wounds. *Cochrane Database Syst Rev.* 2013;12
- 88. 201. Eskes AM, Ubbink DT, Lubbers MJ, Lucas C, Vermeulen H. Hyperbaric oxygen therapy: solution for difficult to heal acute wounds? Systematic review. World J Surg. 2011;35:535–42. doi: 10.1007/s00268-010-0923-4.