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Abstract In this paper, we introduce a new class of sets and functions,
namely geodesic locally starshaped G-invex sets and geodesic semilocal preinvex
functions on Riemannian manifolds. We study the properties of these classes of
sets and functions and derive certain characterizations. The results of the paper
extend and unify several known results from literature to a more general class
of functions as well as in more general space setting.
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1 Introduction

Convexity plays an important role in various fields like management science, en-
gineering, mathematical economics, optimization theory and Riemannian man-
ifolds etc. However, the notion of convexity does no longer suffice in several real
world applications. Therefore, it is essential to consider a large class of general-
ized convex functions and also look for practical criteria of convexity. For recent
development and survey, we refer to Mishra and Upadhyay [17, 18, 19, 20, 21]
and Mishra et al. [22].

Mangasarian [15] has introduced the notion of pseudoconvexity and pseudo-
concavity. The concept of invex function introduced by Hanson [8] and named
by Craven [6] is a significant generalization of the notion of convexity. This work
inspired a great deal of subsequent works, which has greatly expanded the role
and application of invexity in nonlinear optimization and other branches of pure
and applied sciences. Ben-Israel and Mond [5] introduced a new generalization
of convex sets and convex functions, later, termed as invex sets and preinvex
functions, by Weir and Mond [31] and Weir and Jeyakumar [30].

In 1977, Ewing [7] developed a generalized convexity known as semilocal con-
vexity by reducing the width of the line segment, where the concept is applied
to provide sufficient optimality conditions in variational and control problems.
Generalizations of semilocal convex functions and their properties have been
studied by Kaul and Kaur [9, 10] and Kaur [11]. In 1996, Preda et al. [25] es-
tablished optimality conditions and duality results for nonlinear programming
involving semilocal preinvex and related functions. Later these results are ex-
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tended in [26] for a multiple-objective programming problems. These results
have many applications.

It is well-known that in linear topological spaces, the notion of convex sets
rely on connecting any two points of the space by line segment. In several real-
world applications, it is not possible to connect the points through line segment.
This led to the idea of the generalization of the classical notion of convex sets.
Udriste [28] and Rapcsak [27] proposed a generalization of the convexity no-
tion by replacing the linear spaces by Riemannian manifolds, the line segments
by a geodesic segments between any two points, and the convex function by
the positiveness of their Hessian. A geodesic on the Riemannian manifolds is
a curve, that locally minimizes the arc length. Udriste [28] generalization is
based on the fact that many of the properties of convex programs on Euclidean
space carry over to the case of a complete Riemannian manifolds. Following
Udriste [28], several other generalizations of convex sets and convex functions
have been proposed on the Riemannian manifolds. In order to extend the va-
lidity of the results to a larger classes of optimization problems, these concepts
have been generalized and extended in several directions using novel and inno-
vative techniques. Several authors have studied the properties of generalized
convex functions on Riemannian manifolds.

Pini [24] introduced the notion of invex function on Riemannian manifold
and Mititelu [23] investigated its generalizations. Barani and Pouryayevali [2]
defined the geodesic invex set, geodesic η-invex function and geodesic η-preinvex
function on Riemannian manifold and discussed the relation between them. In
[3] Barani and Pouryayevali introduced generalized invariant monotone vector
fields on Riemannian manifolds and discussed their relationship with general-
ized invexities. Li et al. [14] studied the weak sharp minima for constrained
optimization problems on Riemannian manifolds and their characterizations.
Recently, Agarwal et al. [1] have introduced the notion of geodesic G-invex sets
and geodesic η-preinvex functions and study their properties.

Motivated by the works of Agarwal et al. [1],Upadhyay et al. [29] and Yang
and Li [32], we introduce the classes of geodesic semilocal preinvex and semilocal
semistrictly geodesic preinvex functions on Reimannian manifolds. We establish
that under geodesic semilocal preinvexity assumption, a local solution of a min-
imization problem becomes a golbal one. Moreover, the epigraph of a geodesic
semilocal preinvex function is a geodesic semilocal starshaped invex set. Our
results extend and unify several known results in the literature such as Agar-
wal et al. [1], Yang and Li [32] and references therein to a more genral class of
functions as well as to a more general space setting.

2 Preliminaries and definitions

In this section, we gave some preliminary notations, about Riemannian mani-
folds and some basic definitions which will be used throughout this paper. For
preliminary part of this section we refer to [2].

Definition 2.1 [16] A subset S ⊆ Rn is said to be locally starshaped invex set
with respect to η if for any x, y ∈ S, there exist a positive maximal number
0 < aη(x, y) ≤ 1 such that

y + λη(x, y) ∈ S, ∀λ ∈ [0, aη(x, y)] .
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Definition 2.2 Let M be a Riemannian manifold and η : M ×M → TM be
a vectorial function such that for every x, y ∈ M,η(x, y) ∈ TyM. A nonempty
subset S ⊆M is called geodesic locally starshaped invex set with respect to η, if
for any x, y ∈ S, there exist a positive maximal number 0 < aη(x, y) ≤ 1 and a
unique geodesic γ : [0, aη(x, y)]→M, such that

γx,y(0) = y, γ′x,y(0) = η(x, y), γx,y(λ) ∈ S, ∀λ ∈ [0, aη(x, y)] . (2.1)

For further details on differential and Riemannian geometry, we refer to [13, 12].

Definition 2.3 Let M be a Riemannian manifold and S ⊆ M be a geodesic
locally starshaped invex set with respect to η : M × M → TM. We say that
a function f : S → R is geodesic semilocal preinvex (gslpi) on S if for any
x, y ∈ S, (with a maximal positive aη(x, y) ≤ 1 satisfying (2.1)), there exist a
positive number 0 < dη(x, y) ≤ aη(x, y), such that

f(γx,y(λ)) ≤ λf(x) + (1− λ)f(y), ∀λ ∈ [0, dη(x, y)] .

Definition 2.4 Let M be a Riemannian manifold and S ⊆ M be a geodesic
locally starshaped invex set with respect to η : M ×M → TM. We say that a
function f : S → R is strictly geodesic semilocal preinvex (sgslpi) on S if for
any x, y ∈ S, x 6= y, (with a maximal positive aη(x, y) ≤ 1 satisfying (2.1)),
there exist a positive number 0 < dη(x, y) ≤ aη(x, y), such that

f(γx,y(λ)) < λf(x) + (1− λ)f(y), ∀λ ∈ [0, dη(x, y)] .

Definition 2.5 Let M be a Riemannian manifold and S ⊆ M be a geodesic
locally starshaped invex set with respect to η : M × M → TM. We say that
a function f : S → R is semistrictly geodesic semilocal preinvex (ssgslpi) if
∀x, y ∈ S, f(x) 6= f(y), (with a maximal positive aη(x, y) ≤ 1 satisfying (2.1)),
there exist a positive number 0 < dη(x, y) ≤ aη(x, y), such that

f(γx,y(λ)) < λf(x) + (1− λ)f(y), ∀λ ∈ [0, dη(x, y)] .

Definition 2.6 Any set S ⊆ M × R is said to be geodesic locally starshaped
G-invex set if there exist η : M ×M → TM, and a positive maximal number
0 < aη(x, y) ≤ 1 such that for any pair of (x, α), (y, β) ∈ S, we have

(γx,y(λ), λα+ (1− λ)β) ∈ S, ∀λ ∈ [0, aη((x, α), (y, β))] .

3 Properties of geodesic locally starshaped G-
invex sets and geodesic semilocal preinvex func-
tions

In this section, we derive some properties of geodesic semilocal preinvex func-
tions and semistrictly geodesic semilocal preinvex functions.

Theorem 3.1 Let S ⊆ M be a nonempty geodesic locally starshaped invex set
with respect to η : M ×M → TM and f : S → R be a semistrictly geodesic
semilocal preinvex function. If y ∈ S is a local optimal solution to the problem
(P)

Min f(x)
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s.t. x ∈ S,

then y is global minimum in (P).

Proof Suppose that y ∈ S is a local minimum. Then, there is a neighbourhood
Nε(y) such that

f(y) ≤ f(x), ∀x ∈ S ∩Nε(y). (3.1)

If y is not a global minimum of f then there exists a point x∗ ∈ S such that

f(x∗) < f(y).

Since S is a geodesic locally starshaped invex set with respect to η, there exists
an unique geodesic γ : [0, aη(x∗, y)]→M such that

γx∗,y(0) = y, γ′x∗,y(0) = η(x∗, y), γx∗,y(λ) ∈ S, ∀λ ∈ [0, aη(x∗, y)] .

If we choose ε > 0 small enough such that d(γ(λ), y) < ε, then γ(λ) ∈ Nε(y).
By the semistrictly geodesic semilocal preinvexity of f, there exists bη(x∗, y) <
aη(x∗, y), such that

f(γ(λ)) < λf(x∗) + (1− λ)f(y) < f(y), ∀λ ∈ [0, bη(x∗, y)] .

Therefore, for each γ(λ) ∈ S ∩Nε(y), f(γ(λ)) < f(y), which is a contradiction
to (3.1). Hence the result follows.

�

Theorem 3.2 Let f : S → R be a semistrictly geodesic semilocal preinvex
function on a geodesic locally starshaped invex set S ⊆M with respect to η, and
let g : I → R be a convex and strictly increasing function, where range(f) ⊆ I.
Then, the composite function g(f) is a semistrictly geodesic semilocal preinvex
function on S.

Proof For any x, y ∈ S, λ ∈ (0, dη(x, y)), if g(f(x)) 6= g(f(y)), then f(x) 6= f(y).
Since f is a semistrictly geodesic semilocal preinvex function, we have

f(γx,y(λ)) < λf(x) + (1− λ)f(y), ∀λ ∈ [0, dη(x, y)] .

From the convexity and strict increasing property of g, for all λ ∈ [0, dη(x, y)] ,
it follows that

g [f(γx,y(λ))] < g [λf(x) + (1− λ)f(y)]

< λg(f(x)) + (1− λ)g(f(y)).

Hence, g(f) is a semistrictly geodesic semilocal preinvex function on S.

�

Theorem 3.3 Let S ⊆M be a geodesic locally starshaped invex set with respect
to η, then f is a geodesic semilocal preinvex on S with respect to η if and only
if its epigraph Gf =: {(x, α) : x ∈ S, f(x) ≤ α, α ∈ R} is a geodesic locally
starshaped invex set with respect to η corresponding to M.
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Proof Assume that f is geodesic semilocal preinvex on S with respect to η and
(x, α1), (y, α2) ∈ Gf , then x, y ∈ S, and f(x) ≤ α1, f(y) ≤ α2. Since S is a
geodesic locally starshaped invex set, there exists a maximal positive number
0 < aη(x, y) ≤ 1, such that

γx,y(λ) ∈ S, ∀λ ∈ [0, aη(x, y)] .

In addition, in view of f being a geodesic semilocal preinvex function on S with
respect to η, there is a positive number dη(x, y) ≤ aη(x, y) such that

f(γx,y(λ)) ≤ λf(x) + (1− λ)f(y) ≤ λα1 + (1− λ)α2, ∀λ ∈ [0, dη(x, y)] ,

i.e.
(γx,y(λ), λα1 + (1− λ)α2) ∈ Gf , ∀λ ∈ [0, dη(x, y)] .

Therefore, Gf = {(x, α) : x ∈ S, f(x) ≤ α, α ∈ R} is a geodesic locally star-
shaped invex set with respect to η corresponding to M.

Conversely, if Gf is a geodesic locally starshaped invex set with respect to
η corresponding to M, then for any points (x, f(x)), (y, f(y)) ∈ Gf , there exists
a maximal positive number 0 < aη((x, f(x)), (y, f(y))) ≤ 1 such that

(γx,y(λ), λf(x) + (1− λ)f(y)) ∈ Gf , ∀λ ∈ [0, aη((x, f(x)), (y, f(y)))] .

which implies that

f(γx,y(λ)) ≤ λf(x) + (1− λ)f(y), ∀λ ∈ [0, aη((x, f(x)), (y, f(y)))] .

Hence, f is a geodesic semilocal preinvex on S.

�

Theorem 3.4 Let Si where i ∈ I, be a family of geodesic locally starshaped
G-invex sets in M ×R with respect to the same η : M ×M → TM. Then, their
intersection

⋂
i∈I
Si is also a geodesic locally starshaped G-invex set.

Proof Let (x, α), (y, β) ∈
⋂
i∈I
Si. Then, (x, α), (y, β) ∈ Si, for each i ∈ I. But

Si, i ∈ I are all geodesic locally starshaped G-invex set for each i ∈ I, it follows
that

(γx,y(λ), λα+ (1− λ)β) ∈ Si, ∀λ ∈ [0, ai((x, α), (y, β))] , i ∈ I.

Taking a((x, α), (y, β)) = min ai((x, α), (y, β)), i ∈ I, we have

(γx,y(λ), λα+ (1− λ)β) ∈
⋂
i∈I
Si, ∀λ ∈ [0, a((x, α), (y, β))] .

Hence, the result follows.

�

Theorem 3.5 Let S ⊆M be a geodesic locally starshaped invex set with respect
to η : M ×M → TM and let fi, i ∈ I be a family of real valued functions, which
are geodesic semilocal preinvex for the same η and bounded from above on S;
then function f(x) = sup

i∈I
fi(x) is a geodesic semilocal preinvex on S.
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Proof Given that each fi is a geodesic semilocal preinvex function for the same
η on S, therefore, from Theorem 3.3, its epigraph

E(fi) =: {(x, α) : x ∈ S, α ∈ R, fi(x) ≤ α},

is a geodesic locally starshaped G-invex set in M ×R, Therefore, from Theorem
3.4. their intersection⋂

i∈I
E(fi) = {(x, α) : x ∈ S, α ∈ R, fi(x) ≤ α; i ∈ I},

= {(x, α) : x ∈ S, α ∈ R, f(x) ≤ α},

is also a geodesic locally starshaped G-invex set in M ×R. It is easy to see that
this intersection is the epigraph of f. Hence, from Theorem 3.3, the function
f(x) = sup

i∈I
fi(x) is a geodesic semilocal preinvex on S.

�

Theorem 3.6 Let Si ⊂ M, (i = 1, 2, . . . ,m) be a collection of geodesic locally
starshaped invex sets with respect to the same η, then

⋂m
i=1 Si is also a geodesic

locally starshaped invex set with respect to η.

Proof For all x, y ∈
⋂m
i=1 Si, we have x, y ∈ Si (i = 1, 2, . . . ,m).

Since Si (i = 1, 2, . . . ,m) are all geodesic locally starshaped invex sets with
respect to same η, then there exist positive numbers 0 < ai(x, y) ≤ 1 (i =
1, 2, . . . ,m) such that

γx,y(λ) ∈ Si, ∀λ ∈ [0, ai(x, y)] , i = 1, 2, . . . ,m

Taking a(x, y) = min ai(x, y), i = 1, 2, . . . ,m, we can get

γx,y(λ) ∈
m⋂
i=1

Si, ∀λ ∈ [0, a(x, y)] .

Therefore, the theorem is proved.

�

Theorem 3.7 If the functions fi : M → R (i = 1, 2, . . . ,m) are geodesic
semilocal preinvex on geodesic locally starshaped invex set S ⊆ M with respect
to same η, then the function

f(x) =

m∑
i=1

aifi(x),

is also geodesic semilocal preinvex on S with respect to η, for all ai ≥ 0, i =
1, 2, . . . ,m.

Proof Since S is a geodesic locally starshaped invex set with respect to η, then
for all x, y ∈ S, there exist a positive numbers 0 < a(x, y) ≤ 1, such that

γx,y(λ) ∈ S, ∀λ ∈ [0, aη(x, y)] .
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On the other hand, fi, i = 1, 2, . . . ,m are all geodesic semilocal preinvex on S
with respect to the same η; thus, there exist positive numbers di(x, y) ≤ a(x, y),
such that

fi(γx,y(λ)) ≤ λfi(x) + (1− λ)fi(y), ∀λ ∈ [0, di(x, y)] , i = 1, 2, . . . ,m.

Now, letting d(x, y) = min di(x, y), i = 1, 2, . . . ,m, we have

m∑
i=1

aifi(γx,y(λ)) ≤ λ
m∑
i=1

aifi(x) + (1− λ)

m∑
i=1

aifi(y), ∀λ ∈ [0, d(x, y)] ,

⇒ f(γx,y(λ)) ≤ λf(x) + (1− λ)f(y), ∀λ ∈ [0, d(x, y)] .

That is, f(x) is geodesic semilocal preinvex on S with respect to η.

�

Theorem 3.8 If f is a geodesic semilocal preinvex function on a geodesic locally
starshaped invex set S ⊆M with respect to η, then the lower section of f defined
by

Sα = {x ∈ S : f(x) ≤ α}

is a geodesic locally starshaped invex set for any α ∈ R.

Proof For any α ∈ R and x, y ∈ Sα, then x, y ∈ S and f(x) ≤ α, f(y) ≤ α.
Since S is a geodesic locally starshaped invex set, there is a maximal positive
number 0 < aη(x, y) ≤ 1, such that

γx,y(0) = y, γ′x,y(0) = η(x, y), γx,y(λ) ∈ S, ∀λ ∈ [0, aη(x, y)] .

In addition, due to the geodesic semilocal preinvexity of f, there is a positive
number dη(x, y) ≤ a(x, y), such that

f(γx,y(λ)) ≤ λf(x) + (1− λ)f(y) ≤ λα+ (1− λ)α = α, ∀λ ∈ [0, dη(x, y)] .

That is,
γx,y(λ) ∈ Sα, ∀λ ∈ [0, dη(x, y)] .

Therefore, Sα is a geodesic locally starshaped invex set with respect to η for
any α ∈ R.

�

Theorem 3.9 Let f be a real valued function defined on a geodesic locally star-
shaped invex set S ⊆ M, then f is a geodesic semilocal preinvex function with
respect to η if and only if for each pair of points x, y ∈ S (with a maximal
positive number 0 < aη(x, y) ≤ 1 satisfying (2.1)) there exists a positive number
dη(x, y) ≤ aη(x, y) such that

f(γx,y(λ)) < λα+ (1− λ)β, ∀λ ∈ [0, dη(x, y)] ,

whenever f(x) < α, f(y) < β.
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Proof Let x, y ∈ S and α, β ∈ R such that f(x) < α, f(y) < β. Due to the
geodesic locally starshaped invexity of S, there is a maximal positive number
aη(x, y), such that

γx,y(λ) ∈ S, ∀λ ∈ [0, aη(x, y)] .

In addition, owing to the geodesic semilocal preinvexity of f, there is a positive
number dη(x, y) ≤ aη(x, y) such that

f(γx,y(λ)) ≤ λf(x) + (1− λ)f(y) < λα+ (1− λ)β, ∀λ ∈ [0, dη(x, y)] .

Conversely, let (x, α), (y, β) ∈ Gf (see epigraph Gf in Theorem 3.3), then
x, y ∈ S, f(x) ≤ α, and f(y) ≤ β. Hence, f(x) < α + ε and f(y) < β + ε hold
for any ε > 0. According to the hypothesis, for x, y ∈ S (with a positive number
0 < aη(x, y) ≤ 1 satisfying (2.1)), there exists a positive number dη(x, y) ≤
aη(x, y) such that

f(γx,y(λ)) < λα+ (1− λ)β + ε, ∀λ ∈ [0, dη(x, y)] .

Let ε→ 0+, then

f(γx,y(λ)) ≤ λα+ (1− λ)β, ∀λ ∈ [0, dη(x, y)] .

That is,
(γx,y(λ), λα+ (1− λ)β) ∈ Gf , ∀λ ∈ [0, dη(x, y)] .

Therefore, Gf is a geodesic locally starshaped invex set corresponding to M.
From Theorem 3.3, it follows that f is geodesic semilocal preinvex on S with
respect to η.

�

4 Conclusion

In this paper, we introduced two new classes of functions called geodesic semilo-
cal preinvex functions and semistrictly geodesic semilocal preinvex functions on
Riemannian manifolds. We have shown that for semistrictly geodesic semilocal
preinvex function, a local minimum is a global one. Next, we proved that the
intersection of a family of geodesic locally starshaped G-invex sets is geodesic lo-
cally starshapedG-invex set and intersection of geodesic locally starshaped invex
sets is geodesic locally starshaped invex set. We have established that the linear
combination of geodesic semilocal preinvex functions is also geodesic semilocal
preinvex function. After this, we established a relation between geodesic semilo-
cal preinvex functions and its lower section of the function. Finally, we charac-
terize some properties of geodesic semilocal preinvex functions in terms of their
epigraphs. The results of the paper generalizes and extends some earlier results
from Agarwal et al. [1], Yang and Li [32], Upadhyay et al. [29] and references
therein. The results of this paper and the results of Barani and Puryayewali
[4] could be used to establish necessary and sufficient optimality conditions for
vector optimization problems on Riemanninan manifols. This will be our course
of study in subsequent work.
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